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ABSTRACT 

A novel micro cloud point extraction (MCPE) was developed as a fast, simple, and 

economical preconcentration method for spectrophotometric determination of Zn, Cu, and 

Hg in water samples. In contrary to traditional cloud point extraction, this method does not 

need heating. To achieve the cloud point in room temperature, the MCPE procedure was 

carried out in brine. Triton X-114 was employed as a non-ionic surfactant and the analytes 

were chelated by 4-(2-pyridylazo) resorcinol prior to extraction. The important factors 

influencing the extraction efficiency were investigated and optimized. Under the optimized 

condition, calibration curve was found to be linear in the concentration range of 0.15-0.60, 

0.02-0.10, and 0.30-0.80 mg.L-1 for Zn, Cu, and Hg respectively with a limit of detection of 

51.7, 9.8, and 13.1 μg.L-1.  
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INTRODUCTION 

Trace determination of heavy metals is one of the most important issues of chemical analysis 

[1]. Over the years, UV-Vis spectrophotometry has been widely used for the determination of 

metals [2-6], because it is an available and inexpensive technique which can be found in most 

laboratories. However, due to low concentration of heavy metals, insufficient sensitivity of the 

instrument, and matrix interferences, there are some difficulties for determination of traces of 

such analytes using this technique. Therefore, developing and application of a sample 

preparation/ preconcentration step prior to instrumental analysis is ineluctable [7]. A sample 

preparation step must be fast, economical, environmentally friendly, easy to perform, and 

useful for broad spectrum of analytes in various matrices [8]. In recent years, miniaturization 

of sample preparation has become an important factor for new sample preparation techniques. 

Some of these techniques include single drop microextraction (SDME) [9, 10], dispersive 

liquid-liquid microextraction (DLLME) [11-13], solid phase extraction (SPE) [14-16], solid 
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phase microextraction (SPME) [17, 18], and cloud point extraction (CPE) [19-22]. Meanwhile, 

the concern for environmental pollution and human health has led to the development of 

green analytical methods. Green chemistry concentrates on eliminating or reducing the 

consumption of organic solvents, and/or replacing the organic solvent with non-toxic and 

environmental friendly solvents [23]. One of favorite approach in green chemistry is replacing 

organic solvent with non-toxic and non-flammable solvents such as ionic liquids [24-29]; 

however it must be noted that they are expensive solvents, many of them are not 

commercialized and they can also decompose in contact with moisture, giving harmful 

volatiles [30]. In 1978, Watanab introduced cloud point extraction (CPE) as a new extraction 

method for determination of Zn with l-(2-Pyridylazo)-2-Naphthol ligand [31]. Since then, CPE 

was applied widely for determination of various analytes [32-33], mainly for the extraction of 

metal ions [34-38]. The most important feature of CPE is application of a surfactant, mostly 

non-ionic, as the extractant phase [39] which means that CPE avoids the consumption of large 

amounts of expensive, toxic and flammable organic solvents. In CPE, in a temperature above 

a well-defined point, known as cloud point temperature (CPT), non-ionic surfactant molecules 

form structures known as micelles which extract analytes. This step which takes place in water 

bath needs high temperature sometimes up to 60 ºC [40] and it’s usually time consuming [41]. 

CPE can be coupled with many analytical instruments including spectrophotometry. In 

spectrophotometric determination of analytes, it is common to use macrocells (3.5 mL). That 

means the consumption of diluting agent which is necessary to dissolve the micelles before 

introducing the sample to any instrument, can reach up to 2 mL [42]. 

In our previous work, we introduced a new variant of CPE, named new micro cloud 

point extraction (MCPE), for the determination of two metals (uranium and vanadium) [43] 

and some organic dyes [44, 45] in water samples in water samples. MCPE is a green and fast 

extraction method based on miniaturization of CPE. In MCPE, the consumption of organic 

solvents is reduced to 40-50 μL which makes this method even more environmental friendly. 

Besides, since MCPE is performed in brine, the cloud point temperature (CPT) can be reached 

at room temperature, therefore, heating step is entirely eliminated. MCPE is a very flexible 

extraction method which can be potentially coupled with all analytical instruments, especially 

with spectrophotometer. Here we employed MCPE for the extraction of Zn, Cu, and Hg from 

aqueous media. Triton X-114 was utilized as extractant phase; and as a well-known chelating 

agent, 4-(2-pirydilazo) resorcinol (PAR) was used as chelating agent. 

EXPERIMENTAL 

Instrument 

A Shimadzu UV/VIS spectrophotometer, UV-160 (Kyoto, Japan) equipped with two 

10 µL microcells (Starna, UK) was used for measuring the absorbance and recording the 

spectra. 
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Reagents and chemicals 

All reagents and solvents were of analytical grade and were purchased from Merck 

KGaA (Germany) and were used as received. Zinc and mercury standard solutions (1000 mg.L-

1) and CuSO4·5H2O were obtained from the same company. 4-(2-pyridylazo) resorcinol (0.01 

M), Na2SO4 (5% w/v) and Triton X-114 (2% v/v) solutions were prepared by dissolving 

appropriate amounts of each compound in doubly distilled water. The pH of the sample 

solution was adjusted using a suitable phosphate buffer. Doubly distilled water was used 

throughout all the procedures. 

Micro Cloud Point Extraction procedure 

An aliquot of the sample solution containing appropriate amounts of the analyte was 

transferred into a centrifuge test tube with conical bottom containing PAR solution and 2% 

v/v Triton X-114. The pH was set with addition of 0.5 mL phosphate buffer solution. To reach 

cloud point and formation of a cloudy solution, 0.5 mL of Na2SO4 solution (5% w/v) was 

added to the mixture. Then the mixture was diluted to 10 mL with double distilled water. The 

obtained cloudy solution was centrifuged for 2 minutes for Zn and 5 minutes for Cu and Hg 

at 3500 rpm. During the centrifugation, the surfactant settled down at the bottom of the test 

tube in form of a very high density liquid phase. 20 µL of this sediment was transferred into a 

vial and dissolved in 50 µL of methanol. Finally 10 µL of this mixture was transferred to a 

microcell for spectrophotometric determination. The blank was prepared in the same way but 

without the analytes. 

 
Figure 1.  Absorption spectra of 0.2 mg.L-1 Zn (a), 0.04 mg.L-1 Cu (b), and 0.70 mg.L-1 Hg (c) after MCPE 

extraction 
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RESULTS AND DISCUSSION 

Absorption spectra of complex 

In order to find the wavelength of maximum signals of the metal complexes, i.e. Zn-

PAR, Cu-PAR, and Hg-PAR, the absorption spectra of each was determined in the wavelength 

range of 400 to 800 nm against the reagent blank. As can be seen in Figure 1, maximum 

absorption wavelength for Zn-PAR, Cu-PAR, and Hg-PAR complexes were found to be 517, 

515, and 530 nm respectively. Therefore, these wavelengths were selected as the absorption 

wavelengths for further determinations. During all of the following experiments, the blank 

absorbance of all reagents was corrected. 

Optimization of MCPE 

To obtain the maximal extraction efficiency, important experimental parameters which 

can potentially influence enrichment factor of extraction, such as pH of sample solution, effect 

of ionic strength of the sample solution, amount of surfactant and ligand concentration, type 

of diluting solvents, and centrifugation speed have been investigated in detail for proposed 

MCPE method. The univariant method was used to simplify the optimization procedure. A 

series of experiments were designed for this goal as discussed below. Number of replicates of 

analysis was at least three for each experiment. 

Effect of pH 

To obtain the maximal extraction efficiency, important experimental parameters which 

can potentially influence enrichment factor of extraction, such as pH of sample solution, effect 

of ionic strength of the sample solution, amount of surfactant and ligand concentration, type 

of diluting solvents, and centrifugation speed have been investigated in detail for proposed 

MCPE method. The univariant method was used to simplify the optimization procedure. A 

series of experiments were designed for this goal as discussed below. Number of replicates of 

analysis was at least three for each experiment. 

 
Figure 2.  Effect of pH of aqueous solution on MCPE of 0.60 mg.L-1 Zn (◆), 0.10 mg.L-1 Cu (■), and 0.50 

mg.L-1 Hg (▲) 
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Effect of pH 

pH plays an important role in complex formation of metals. Therefore, the effect of pH 

on the absorbance of Zn-PAR, Cu-PAR, and PAR has been examined with great concern. PAR 

acts as a tridentate chelating agent and bonds with metal ions through the o-hydroxyl group. 

This species is dominant in pH>5 [46]. Therefore, pH of the sample solution was studied in 

the range of 4 to 9 (Figure 2). The maximum absorbance of Zn-PAR, Cu-PAR, and Hg-PAR 

were obtained at pH=7.0, pH=8.0, and pH=5.5, respectively. In the next experiments, 0.5 mL 

of appropriate phosphate buffer was added to the sample solution for adjustment of the pH 

of sample solution to the desired value. 

Effect of salt concentration 

Addition of salt in MCPE is for increasing the ionic strength of the sample solution and 

formation of micelles. It is probably due to salting out effect which reduces the solubility of 

surfactant molecules in aqueous media. Therefore the concentration of salt has an important 

effect in reaching cloud point at ambient temperature. The chosen salt for this purpose was 

Na2SO4 because it implies more ionic strength to the sample solution in comparison with other 

tested salts (NaCl, KCl, and NaHSO4). 

The effect of Na2SO4 concentration on the absorbance was studied in the range of 0.12-

0.75% w/v and it was found that the absorbance of all analytes reaches to a maximum value 

at 0.25% w/v of Na2SO4 and the cloudy solution was formed immediately. Therefore, there 

was no need for heating the sample solution to reach cloud point. Consequently, this 

concentration of sodium sulphate was used in all subsequent experiments. 

 

 
Figure 3.  Effect of concentration of Triton X-114 on MCPE of 0.60 mg.L-1 Zn (◆), 0.10 mg.L-1 Cu (■), 

and 0.50 mg.L-1 Hg (▲) 
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Effect of Triton X-114 concentration 

The concentration of Triton X-114 as the extractant medium has great effect on the 

extraction efficiency. In order to find the best amount of it, different concentrations of Triton 

X-114 in the range of 0.05-0.3% v/v were subjected to the same procedure. Figure 3 shows 

instrument responses for target analytes. According to these data, Triton X-114 concentration 

of 0.15% was chosen as the best concentration for the further experiments. In lower 

concentrations of Triton X-114, very little micelle formation was observed which consequently 

reduced the efficiency of extraction. 

Selection of diluting solvent 

In coupling CPE methods with UV-Vis spectrophotometer, it is necessary to dissolve 

the formed micelles. This is achieved by using diluting agents which usually are organic 

solvents. Diluting agent must be capable of dissolving the sedimented phase completely and 

rapidly. For this purpose, four solvents, acetone, ethanol, methanol, and acetonitrile, were 

considered. The results lead us to select acetonitrile for Zn and methanol for Cu and Hg as 

diluting solvent. 

Effect of PAR concentration 

The effect of concentration of PAR as a chelating agent on the absorbance of analytes 

was also investigated. The maximum absorbance was obtained at 2×10-4 M PAR for all three 

complexes and remained almost constant with increasing concentration up to 4×10-4 M. 

Effect of time of centrifugation 

Since separating of enriched micellar and aqueous phase is difficult, application of 

centrifugation is necessary. Keeping rotation constant, time of centrifugation was investigated 

in the interval of 1 to 7 min. according to the obtained data, the best time was found to be 2 

min at 3500 rpm for Zn and 5 min at 3500 rpm for Cu and Hg. 

 

Table 1.  Analytical figures of merit for MCPE extraction of Zn, Cu, and Hg 

Parameter  Zinc Copper Mercury 

Equation of calibration curve A = 2.3476CZn - 0.0023 A = 18.005CCu - 0.0432 A = 1.9455CHg - 0.46 

Dynamic range (mg.L-1) 0.15-0.60 0.02-0.10 0.30-0.80 

R2 (determination 

coefficient) 

R² = 0.9666 R² = 0.9676 R² = 0.9799 

Repeatabilitya (RSD%, n = 5) 2.44 3.71 6.06 

Limit of detectionb (µg.L-1) 51.7 9.8 13.1 

Enrichment factor (fold) 2.58 3.71 6.06 

aRSD, relative standard deviation, for 5 replicate measurements 

bLOD, was based on 3Sb/m criterion for 10 blank measurements 
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Linear range, limit of detection and precision 

Analytical figures of merit for the proposed method obtained under optimal conditions 

are shown in Table 1. Detection limits (LODs) were obtained based on a signal-to-noise ratio 

of 3. The repeatability of the method, expressed as relative standard deviation (RSD), was 

calculated for five replicates of the standard at an intermediate concentration of the calibration 

curve. The enrichment factor (EF) that was calculated as the ratio of the analyte concentration 

after MCPE (CMCPE) and the initial concentration of the analyte (C0) within the sample (Eq. 1), 

was found to be 2.6, 13.2, and 17.0 fold for Zn, Cu, and Hg, respectively. 

𝐸𝐹 = 𝐶𝑀𝐶𝐹𝐸  / 𝐶0 (1) 

Table 2.  Comparison of MCPE with other preconcentration methods for determination of Zn, Cu, 

and Hg 

Analyte 

Microex

traction 

Method 

Extrac

tant 

Sample 

Volume 

(mL) 

Volume 

of 

diluting 

solvent 

(mL) 

LOD 

(μg.L-1) 

EFa 

(fold) 

RSD

% 

Recove

ry% 

Approx

imated 

Total 

analysis 

time 

(min) 

Ref 

Zinc 

DLLME/

AASb 
CCl4 8 0.07 0.3 10.3 1.5 

98.5-

103.5 
5 47 

CPE/UV-

Vis 

Triton 

X-114 
25 2.5 1.2 ≈ 10 2.1 95-104 22 48 

MCPE/U

V-Vis 

Triton 

X-114 
10 0.05 51.7 2.58 2.44 

93.42-

112.66 
2 

This 

work 

Copper 

DLLME/

AAS 
CHCl3 10 - 7.92 6 3.22 

94.94-

103.21 
5 49 

DLLME-

SFOc/AA

S 

1-

undec

anol 

20 0.5 3.4 10 0.7 
91.1-

92.9 
25 50 

CPE/UV-

Vis 

Triton 

X-100 
25 1 5 22 2.8 96-101 15 51 

MCPE/U

V-Vis 

Triton 

X-114 
10 0.05 9.8 13.15 3.71 

93.00-

112.66 
5 

This

work 

Mercury 

DLLME/

UV-Vis 

[Hmim

][Tf2N] 
10 0.35 3.9 18.8 1.7 

92.2-

103.2 
6 52 

CPE/UV-

Vis 

Triton 

X-114 
50 1.5 

1.65,14.

35 
33.3 

2.75,

2.65 

97.8-

103.5 
20 53 

MCPE/U

V-Vis 

Triton 

X-114 
10 0.05 13.1 17 6.06 

115.00-

107.50 
5 

This 

work 

a Enrichment factor 
b Atomic absorption spectrometry 
c Dispersive liquid-liquid microextraction-solidification of floating organic drop 
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A comparison between data obtained with MCPE with those recently obtained with 

other microextraction methods coupled with spectrophotometer for determination of Zn, Cu, 

and Hg is summarized in Table 2. 

Analysis of real samples 

The MCPE procedure was applied on tap water. Since no detectable analyte was 

observed, the samples were spiked with 3 different concentrations of each cation to investigate 

the matrix effect on their determination individually. The results are shown in Table 3. A can 

be seen, very good recoveries between 93.00 and 115.00% were achieved with reproducibilities 

better than 6.38%. The total analysis time for any of the target analytes was less than 5 min. 

 

CONCLUSION 

As a novel, fast, economical, effective and easy to operate method, MCPE, was 

developed for preconcentration and determination of traces of three heavy metals (zinc, 

copper, and mercury) in aqueous samples. Triton X-114 was used as a non-ionic and green 

extractant solvent. In comparison to the similar methods of extraction like CPE, DLLME, and 

SPME, MCPE is much faster and simpler. Since the time consuming step of water bath (to 

reach cloud point) is eliminated for MCPE in brine, the total analysis time including 

microextraction was about 5 min; and consumption of solvents is minimized to 50 μL. 

Spectrophotometric instrumentations also own merits of simplicity, cheapness, portability and 

so on. Enrichment factor and reproducibility of MCPE was found to be in the same order of 

complicated and time consuming extraction techniques such as DLLME-SFO/AAS, while 

better LODs were achieved. In this paper we coupled MCPE with spectrophotometry 

equipped with microcells, as a fast and available instrument; but MCPE can be potentially 

coupled with any analytical instrument. Therefore, the proposed MCPE method is applicable 

in ordinary laboratories with any instrument available.  

Table 3.  Analytical results for the determination of analytesin tap water (n=3) 

 Added (mg.L-1) Recovery (%) RSD (%) 

Zinc  

0.15 112.6 1.95 

0.40 93.42 1.84 

0.60 109.60 4.73 

Copper  

0.02 93.00 5.93 

0.05 95.00 3.08 

0.10 98.33 2.56 

Mercury  

0.30 115.00 6.38 

0.50 108.00 5.44 

0.80 107.50 3.50 
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