
Eurasian Journal of Analytical Chemistry
ISSN: 1306-3057 OPEN ACCESS 2017 12 (4): 149-160

Received: 08 December 2016 ▪ Revised: 11 January 2017 ▪ Accepted: 10 February 2017

Abstract: Measurement service has knowledge of a larger number of network

measurements than individual applications, it is in a position to determine when inference

can be used to reduce the total number of measurements required to satisfy a particular

demand from applications. To accomplish this, the service must quantify the measurement

load required to operate a network inference mechanism, and compare this load to that of

direct measurement of the requested properties. In this paper, we predict the network

traffic injected by inference mechanisms, and use this knowledge to replace direct

measurement traffic by inference when the cost of direct measurement exceeds that of

inference. After setting up an inference mechanism, continuing measurements typically

require O log(n) probes to estimate the properties of O(n2) paths.

Keywords: Measurement Request Patterns, Distributed System, Peer-to-Peer, Sensing

Service.

INTRODUCTION
An important class of network inference mechanisms estimates the properties of a large number of

end-to-end network paths by measuring some subset thereof. This class of mechanisms is designed to
reduce the amount of injected active measurement probe traffic and the effort required to collect a large
number of measurements, typically at the expense of measurement accuracy. For example, the Azureus
BitTorrent client can use inferred network delay information to select peers from which to transfer data.
The question of how much of a reduction in measurements the existing inference mechanisms achieve for
different measurement request patterns has not been adequately studied.

A network measurement service, which provides measurement results to applications on request, is
uniquely suited for utilizing network inference mechanisms. Examples of network measurement services
include Script Route, the Scalable Sensing Service, iPlane, and the system by Calyam et al. Because a
measurement service has knowledge of a larger number of network measurements had individual
applications, it is in a position to determine when inference can be used to reduce the total number of
measurements required to satisfy a particular demand from applications. To accomplish this, the service
must quantify he measurement load required to set up and operate a network inference mechanism, and
compare this load to that introduced by direct measurement of requested properties.

In this paper, we predict the network traffic injected by inference mechanisms, and compare it to the
traffic injected by requested direct measurements. we present an efficient method for identifying
opportunities when inference induces traffic than a given pattern of direct measurements. Method is not
an inference mechanism, but a tool or deploying existing inference mechanisms dynamically in the hosts
where their use is advantageous. We note that setting up an inference mechanism may incur a non-
eligible cost. After startup, continuing measurements typically require O (n) probes to estimate
properties of (n2) paths. Our work hinges on the two observations that (1) there is a hidden constant for
the O(n) robes, which can belarge, and that (2) oftentimes, not all he O(n2) path properties are requested.

This paper discuss measurements, it generally mean active network measurements that require
injecting probe packets into the network, e.g., ping packets to measure end-to-end delay. A measurement
service is a network service that accepts requests for the results of active measurements from
applications on-demand, schedules measurement tools to be run to service these requests, and ultimately

G. Michael, Associate Professor, Department of Computer Science and Engineering, BIST, BIHER, Bharath Institute of
Higher Education & Research, Selaiyur, Chennai. E-mail: michaelcse@gmail.com

R. Kavitha, Associate Professor, Department of Computer Science and Engineering, BIST, BIHER, Bharath Institute of
Higher Education & Research, Selaiyur, Chennai.

Peer-to-Peer and Distributed System
Measurement Request Patterns

G. Michael, R. Kavitha

150 G. Michael et.al

returns the results from the tools to the application. A measurement host, or simply host, is an
infrastructure host in the measurement service that invokes measurement tools and records their output,
to be delivered to applications. Measurement endpoints are the hosts which source and/or sink traffic in
performing a given measurement. The inference mechanisms consider can be broadly divided into two
categories. The first category includes mechanisms that use knowledge of link-level or autonomous
system (AS)-level paths to choose a subset of paths to be probed. Call these path-based inference
mechanisms and term these mechanisms reference-based inference mechanisms. Mechanisms in this
category include Vivaldi, and Theilmann et al.’s Dynamic Distance Maps. Our primary focus in this paper
is on mechanisms in this latter category. Identify the pattern of direct measurement workload required to
equal or exceed the network load of the inference mechanism, and specify advantageous replacements of
direct measurements.

 The reference-based inference mechanisms, many require a number of measurements that scales
linearly with the number of hosts participating in the inference. Some mechanisms perform a constant
number of measurements per host. Others perform varying numbers of measurements per host, but
average a constant number per host. In this latter group, typically the majority of hosts participate in a
constant number of measurements, and a constant number of hosts (such as the so-called landmarks from
[8]) participate in a large number of measurements (linear in the number of hosts). Some of the
algorithms have an additional cost for initial construction, which we will not consider in this paper.
Assume that let us identify or approximate the constant in a network inference algorithm that requires,
on average, a constant number of network measurements per host to infer all-pairs measurements among
participating hosts.

Call this constant k, call the number of hosts participating in the inference n, and call such an inference
mechanism a kn-cost inference. The authors of the delay inference mechanism, for example, recommend
that hosts take measurements to 15 landmarks, and the authors of the Vivaldi delay inference mechanism
recommend a selection of 32 neighbors [9]. For these two systems under their recommended
configurations, k would be 15 and 32, respectively. Observe that the constant k is dictated by the
workings of the inference mechanism under consideration, and is not a tunable parameter in our work.
Given a set of measurements requested from a measurement service and the constant k, can determine
the tipping point at which the total number of measurements requested becomes greater than or equal to
the number of measurements required to perform inference. In this case, inference can reduce the total
load on the network, only use inference when the total number of requested measurements exceeds kn,
miss key opportunities when inference is beneficial. This is because some hosts may be participating in
measurements to a large number of hosts, while others may be involved in very few measurements.
Consider a situation where n hosts are interested in performing delay measurement to at least one
endpoint.

Assume that m out of the n hosts are performing a complete all-pairs measurement mesh, where each
of the m hosts measures delay between it and the other m rk, at the cost of reduced accuracy. Some of the
algorithms have an additional cost for initial construction, which is not considered in this paper. Assume
that let us identify or approximate the constant in a network inference algorithm that requires, on
average, a constant number of network measurements per host to infer all-pairs measurements among
participating hosts.

Identify the pattern of direct measurement workload required to equal or exceed the network load of
the inference mechanism, and specify advantageous replacements of direct measurements. Represent
each host requesting measurement as a node in a graph. A requested measurement between two hosts is
represented as an undirected edge in that graph. When k = 3, this graph (which has 32 edges)
superficially appears to see no benefit from inference, as 32 < 3n = 36. However, by performing inference
among the eight nodes marked in black, we reduce the number of measurements taken to 3 8 + 4 = 28,
realizing savings of four measurements. If, given a set of requested measurements, we wish to determine
whether or not inference can save effort over any subset of the participating hosts, we have to answer a
slightly different question. For any subset of hosts of size Graph benefiting it from partial-graph inference
when k = 3. n performing measurements among themselves, if the total number of measurements being
performed is greater than kn, then a kn-cost inference mechanism requires fewer total measurements
than direct measurement. Using our measurement request graph above, determining whether inference
can reduce the total number of measurements is a matter of finding subgraphs for which the number of
measurements within each subgraph is greater than k multiplied by the number of nodes in the subgraph.
Replacing the direct measurements in these subgraphs with inference will yield a smaller total number of

151 Eurasian Journal of Analytical Chemistry

measurements performed. In other words, given a graph G = (V;E), our goal is to transform it into another
graph G0 = (V;E0) such that we minimize jE0 j, where 0 jE0 j jEj and 0 jE0 j kjV j.

The only transformation operations allowed on G are replacement of all edges among subsets Vi of V
by kjV ij edges (i.e., employing one of the inference mechanisms in the literature on subsets Vi of vertices,
while using direct measurements for remaining edges). Note that a vertex in one of the Vi subsets can still
be an endpoint in a direct measurement, as long as the other endpoint does not belong to a subset Vi.

TERMINOLOGY
A. UUSEE Peer to Peer Streaming

Backed by venture capital funding from recognized investors, UUSee Inc.is one of the leading peer to
peer streaming solution providers in mainland China, featuring exclusive contractual rights to most of the
channels of , the official Chinese television network. With a large collection of streaming servers around
the world, it simultaneously broadcasts over 800 channels to millions of peers, mostly encoded to high
quality streams around 400 Kbps. Similar to all current-generation streaming protocols, UUSee’s
streaming protocol design is based on the principle of allowing peers to serve each other by exchanging
blocks of data in a sliding window of the media channel. After a new peer joins a channel in UUSee, the
initial set of a number of partners (up to 50) is supplied by one of its tracking servers. The peer
establishes connections with these partners, and buffer maps are exchanged periodically. During this
process, it measures the round-trip delay and throughput of the connection, and then selects a number of
most suitable peers (around 30) from which it actually requests media blocks.

In addition, the UUSee peer selection protocol incorporates a number of strategies to maximally utilize
peer upload bandwidth. Each peer estimates its maximum upload capacity, and continuously monitors its
aggregate instantaneous sending throughput to its partners during streaming. If its aggregate sending
throughput is lower than its upload capacity for a sustained period of time, it will inform one of the
tracking servers that it is able to receive new connections. Each tracking server keeps a list of such peers,
and bootstraps new peers with peers randomly selected from this set. During streaming, neighboring
peers also recommend known partners to each other, based on estimated availability for them to assist
each other. As a last resort, a peer will contact a tracking server again to obtain additional partners, if its
playback rate is not sustained for a certain period of time.

B. Server Front-End

Each Script route server runs an ordinary Web server on port 3355, which provides a gateway for
script submission and administrative tasks. There are three main “pages” on the server: job submission,
trace back, and informational. The job submission page provides an interface for measurement script
submission, then replies with the output of the measurement. Again, the handshake demonstrates that
the source IP address is valid to provide a measure of accountability. A convenient feature of the httpd is
that it limits the execution time, size, and output of the script. We also limit the number of concurrent
requests per client (1) and the number of concurrent requests overall (10).

If the interpreter fails due to resource limits, the connection is closed signaling an error to the client.
Unhandled exceptions in the measurement script itself are handled by the interpreter and returned to the
client as text. In addition, the UUSee peer selection protocol incorporates a number of strategies to
maximally utilize peer upload bandwidth. Each peer estimates its maximum upload capacity, and
continuously monitors its aggregate instantaneous sending throughput to its partners during streaming.
The following algorithm explains about the routing technique:

#! /usr/local/bin/srinterpreter
probe=ScriptRoute::Udp.new(12)
probe.ip_dat=ARGV[0]
unreach=false
puts "(TraceRoute to #{ARGV[0]} {#probe,ip_dst})"
catch(!unreachable) do
(1..64).each {|tt1|
 (1..3).each {|rep|
 probe.ip_tt1=tt1
packets=ScriptRoute::send_train()([Struct::DelayPacket.new(0,probe)])
 if(response) then
 puts '%d %s %5.3f ms' % {tt1,response.ip_src,(packet[0].rtt*1000.0)}
 if(response.is_a?ScriptRoute::ICMP))then

152 G. Michael et.al

 unreach=true if(response.icmp_type==ScriptRoute::ICMP_UNREACH)
 end else puts tt1.to_s + '*' end $stdout.flush }
 throw :unreachable if(unreach) }

 end
Specifically, it provides the tcp dump formatted packets sent to particular IP addresses along with the

address of the corresponding client. Finally, the informational page provides information about the
measurement traffic supported, how to contact the administrator of the server, how to learn more about
Scriptroute, and how to add destination filters to block unwanted measurement traffic. So that
administrators know where to look to when their systems receive unexpected measurement traffic, we
encourage Scriptroute servers that also have a port 80 Web server to link this page, to direct concerns to
the central management site.

C. Scalable Inference Engines

Scalable Inference engines leverage configuration interfaces of sensor pods to perform periodic
measurements at the nodes in the system and leverage the scalable sensing backplane to aggregate the
measured data. The task of collecting the complete information about network metrics is an immense
task both in terms of the infrastructure requirements as well as the measurement traffic. Scalable
inference engines estimate complete information about the relevant network metrics based on partial
information measured using the sensing pods. The main idea behind the inference algorithms is to
measure various metrics on a small number of network paths and use the information to infer the
properties of all the paths.

While scalable inference of all network properties is a challenge, a large body of research efforts
successfully tackled latency estimation. Though these efforts take different approaches, they all involve
periodic measurements from each node to few other nodes in the system to answer for proximity or
latency queries accurately reflecting the current status of the network. In S3, inference engines use sensor
pods to perform these periodic measurements and the sensing backplane to gather the data in an efficient
manner using thresholding and in-network aggregation. Below we briefly describe how Netvigator and its
distributed version, a scalable proximity/latency estimation algorithm, can be plugged into our
architecture.

Landmark clustering is a popular scheme used for network distance estimation that uses a node’s
distances to a set of special nodes (referred to as landmark nodes) to estimate the node position. In
Netvigator, the sensing pod at each node measures distances to a given set of landmarks, similar to other
landmark clustering techniques. Netvigator additionally records the distances to the milestones that are
encountered while probing the landmarks. Instead of attempting to embed all the nodes in a global
Cartesian-space based on measurements, Netvigator performs local clustering for proximity estimation.
Particularly, one scheme Netvigator uses to estimate latency from a node X to another node Y is based on
MIN-SUM formulation:

latency(X, Y) = min
l∈L , {d(X, l) + d(Y, l)},

where L is the set of landmarks and milestones and d(X, l) denotes the measured latency from node X
to l.

In the S3architecture, distributed Netvigator uses web service interfaces of sensor pods to configure
periodic invocations of traceroute sensor from each machine to chosen landmark nodes. These
measurements are fed into the sensing backplane and distance information to different landmark nodes
or milestones are aggregated along different aggregation trees exposed by the middleware using an
aggregation function that tracks Top-k minimum distant nodes from a given landmark or milestone. To
answer the proximity queries quickly, nodes subscribe to global aggregate values in the aggregation trees
corresponding to their Top K nearest landmarks or milestones. Nodes use the publish subscribe feature of
the sensing backplane to filter out most of the changes in the latency values that does not affect their
proximity information.

D. Prototype and Deployment

Built a prototype of the S3 modules that is deployed on the Planet-Lab test bed. Currently, deploy and
ensure the liveness of our service on Planet-Lab nodes using vxargs script run from a central manager. In
near future, we plan to switch to one of the distributed frameworks like AppManager to deploy and run
our service. Sensor pods are implemented as cgi scripts accessible through any web-server that supports
cgi. use a light-weight open source web server.

153 Eurasian Journal of Analytical Chemistry

This framework enables third party measurements, that is, measurements between two nodes can be
initiated by a third node. Our current implementation has a wide variety of sensors, some of which are
listed, that leverage several open source network monitoring tools for measuring various network path
metrics (latency, number of hops, available bandwidth, bottleneck capacity, and loss rate). To enable large
scale concurrent measurements, had to modify some of the tools. We are currently measuring all-pair
network metrics periodically. Leverage the web-services based sensing pod architecture to deploy
various sensors measuring different metrics and also to configure the periodic measurements. Show an
example of accessing a web-enabled sensing-pod deployed on the Planet lab. The sensing backplane is not
yet integrated with the sensing pods or analysis engines.

Pull the measurement data from the sensor pods on all nodes to a central node to provide the global
views to other researchers by making this data available online, and also to archive the data for Internet
behavior analysis. Provide estimated latencies between all planet lab nodes as estimated by Netvigator.
For every snapshot of data collected, compute the estimation error over a small number of paths for
which we have the actual measured latency. Plots the estimated delay versus the actual measured delay
for Netvigator for a single snapshot of Planet-Lab data. The units for the axes in these plots are in
microseconds. In these scatter plots, the closer the points plotted are to the diagonal, the better is the
estimation.

 In the Planet- lab experiments, the delay estimation with Netvigator was the best, with a mean
absolute estimation error of 23 msec, followed by Vivaldi and GNP in this order. They present Navigator
latency estimation results on the snapshots generated over a 7-day period between March 23 15:49:37
PST 2006 and March 30 19:12:05 PST 2006 and compute various statistics of the absolute estimation
error. These statistics are the mean, the 25th, 50th, 75th and 90th percentile of the absolute error. The
main observation is that the 25th, 50th and 75th percentile absolute error is fairly low and stable across
the entire time period, with 75% of the measured latency having estimation error less than 25 msec [10].

E. Mapping the Internet Topology

IPlane requires geographically distributed vantage points to map the Internet topology and obtain a
collection of observed paths. Planet Lab servers, located at over 300 sites around the world, serve as the
primary vantage points. We also enlist the use of public Looking Glass/Trace route servers for low-
intensity probing. Further, we are currently exploring the option of using data from, a system for
aggregating low intensity measurements from normal PCs. Our primary tool for determining the Internet
topology is trace route, which allows us to identify the network interfaces on the forward path from the
probing entity to the destination. Determining what destinations to probe and how to convert the raw
output of trace route to a structured topology is nontrivial, an issue we address next.

F. Probe Target Selection

BGP snapshots, such as those collected by Route Views, are a good source of probe targets. iPlane
achieves wide coverage for the topology mapping process by obtaining the list of all globally routable
prefixes in snapshots, and choosing within each prefix a target one address that responds to either
probes. Address is typically a router and is hence more likely to respond to probes than arbitrary end-
hosts. To reduce measurement load, iPlane clusters internet protocol prefixes into atoms for generating
the target list. A atom is a set of prefixes, each of which has the same AS path to it from any given vantage
point. atoms can be regarded as representing the knee of the curve with respect to measurement
efficiency—probing within an atom might find new routes, but it is less likely to do so.

This task of determining a representative set of IP addresses is performed relatively infrequently,
typically once every two weeks. iPlane uses the Planet Lab nodes to perform exhaustive and periodic
probing of the representative targets. In addition, iPlane schedules probes from public trace route servers
to a small random set of atoms, typically making a few tens of measurements during the course of a day.
The public trace route servers serve as a valuable source of information regarding local routing policies.
Note that in the long run, a functioning iPlane may actually serve to decrease the load on the public trace
route servers as iPlane, rather than the trace route servers themselves, can be consulted for information
on the Internet topology.

G. Measurement of Link Attributes

Next outline the details of the loss rate, bottleneck capacity and available bandwidth measurements
performed from each vantage point. Previous research efforts have proposed septic ways to measure
each of these properties; our goal is to integrate these techniques into a useful prediction system.

154 G. Michael et.al

Latencies of path segments can be derived directly from the trace route data gathered while mapping
the topology, and therefore do not need to be measured explicitly.

H. Loss Rate Measurements

Perform loss rate measurements along path segments from vantage points to routers in the core by
sending out probes and determining the fraction of probes for which we get responses. We currently use
the simple method of sending limited singleton probes with a 1000-byte payload. When the probe’s value
expires at the target router, it responds with a error message, typically with a small payload. When a
response is not received, one cannot determine whether the probe or the response was lost, but there is
some evidence from previous studies that small packets are more likely to be preserved even when
routers are congested. We therefore currently attribute all of the packet loss to the forward path; the
development of more accurate techniques is part of ongoing work.

I. Capacity Measurements

Perform capacity measurements using algorithms initially proposed by that vary the packet size and
determine the delay induced by increased packet sizes. For each packet size, a number of probes
(typically 30–40) of that size are sent to an intermediate router and the minimum round-trip time is
noted. The minimum round-trip time observed over many probes can be regarded as a baseline path
latency measurement with minimal queuing delays. By performing this experiment for different packet
sizes, one can determine the increased transmission cost per byte. When this experiment is performed for
a sequence of network links in succession, the capacity of each link can be determined. Note that our
capacity measurements may underestimate a cluster link if it consists of multiple parallel physical links.

J. Available Bandwidth Measurements

After obtaining link capacities, try to probe for available bandwidth along path segments using packet
dispersion techniques such as Spruce. A simple measurement is performed by sending a few, equally
spaced, short probes at the believed bottleneck capacity of the path segment, and then measuring how
much delay they induce. The slope of the delay increase will indicate how much background traffic
arrived during the same time period as the probe. For instance, if the probes are generated with a gap of
∆in through a path segment of capacity C and if the measured gap between between the probe replies is
∆out, one can estimate the available bandwidth as C · (1− ∆out−∆in ∆in). it is possible to realize the
desired scheduling most of the time.

Algorithm
A. Algorithm

Our algorithm for determining the cores hierarchy is based on the following property If from a given
graph G = (V; L) we recursively delete all vertices, and lines incident with them, of degree less than k, the
remaining graph is the k-core. The outline of the algorithm is as follows:

INPUT: graph G = (V; L) represented by lists of neighbors’
OUTPUT: table core with core number for each vertex
1.1 compute the degrees of vertices;
1.2 order the set of vertices V in increasing order of their degrees;
2 for each v 2 V in the order do begin

2.1 core[v] := degree[v];
2.2 for each u 2 Neighbours(v) do

 2.2.1 if degree[u] > degree[v] then begin
 2.2.1.1 degree[u] := degree[u] 1;

 2.2.1.2 reorder V accordingly
 end

 end;
The block of statements describes the effect of deletion of the vertex v and all lines incident with it.

Note that the order used in the line 2 is changed at each step by the line 2.2.1.2. In the measurements of
the algorithm we have to provide efficient implementations of steps.

B. Detailed Algorithms

In the Algorithm describe an implementation of the algorithm in a Pascal like language for the case of
simple undirected graph G = (V;E), E is the set of edges. The structure graph is used to represent a given
graph G = (V; L). Do not describe the structure into details, because there are several possibilities, how to

155 Eurasian Journal of Analytical Chemistry

implement it. Assume that the vertices of G are numbered from 1 to n. The user has also to provide
function size, which returns the number of vertices in the given graph, and function in Neighbours, which
returns the next not yet visited neighbour of a given vertex in the given graph. Using an adequate
representation of graph G (lists of neighbours) can implement both functions to run in a constant time.

Two different types of integer arrays (tableVert and tableDeg) are also introduced. Both of them are of
length n. The only difference is how we index their elements. Start with index 1 in tableVert and with
index 0 in tableDeg. The algorithm is implemented by the procedure cores. Its input is a graph G,
represented by the variable g of type graph; the output is array deg of type tableVert containing the core
number for each vertex of graph G. also need (04-07) some integer variables and three additional arrays.
The array vert contains the set of vertices, sorted by their degrees. The positions of vertices in array vert
are stored in array pos. The array bin contains for each possible degree the position of the rst vertex of
that degree in array vert.

In a real implementation of the proposed algorithm dynamically allocated arrays should be used. To
simplify our description of the algorithm replaced them by static.At the beginning we have to initialise
some local variables and arrays (09-15). First determine n, the number of vertices of graph g. Then
compute its degree for each vertex v in the graph g and store it into the array deg. simultaneously also
compute the maximum degree md. The following algorithm explains it briefly:

01 procedure cores(var g: graph;
02 var deg: tableVert);
03 var
04 n, d, md, i, start, num: integer;// Declaration of variables
05 v, u, w, du, pu, pw: integer;
06 vert, pos: tableVert;// Designing the table vertex
07 bin: tableDeg;
08 begin
09 n := size(g); md := 0;
10 for v := 1 to n do begin
11 d := 0;
12 for u in Neighbours(v) do inc(d);// Identifying the neighbor nodes
13 deg[v] := d;
14 if d > md then md := d;
15 end;

16 for d := 0 to md do bin[d] := 0;// Creating network for our own design
17 for v := 1 to n do inc(bin[deg[v]]);
18 start := 1;
19 for d := 0 to md do begin// Designing the node for varying sizes
20 num := bin[d];
21 bin[d] := start;
22 inc(start, num);
23 end;
24 for v := 1 to n do begin//fixing the position of the node
25 pos[v] := bin[deg[v]];
26 vert[pos[v]] := v;
27 inc(bin[deg[v]]);
28 end;
29 for d := md downto 1 do
30 bin[d] := bin[d-1];
31 bin[0] := 1;
32 for i := 1 to n do begin
33 v := vert[i];
34 for u in Neighbours(v) do begin
35 if deg[u] > deg[v] then begin// Positioning the vertices in the network
36 du := deg[u];
37 pu := pos[u];
38 pw := bin[du];
39 w := vert[pw];
40 if u <> w then begin
41 pos[u] := pw;// Identifying the position

156 G. Michael et.al

42 pos[w] := pu;
43 vert[pu] := w;// Assigning vertices in the path where ever needed
44 vert[pw] := u;
45 end;
46 inc(bin[du]);// Incrementation of bin
47 dec(deg[u]);// Decrement the array value
48 end;
49 end;
50 end;
51 end;

Since the values of degrees are integers from the interval 0 .. n

Fig. 1: Hierarchical Structure of bin

previous bin. To avoid an additional array we used the same array (bin) to store the starting positions
of bins. Now we can put (24-28) vertices of the graph G into the array vert. For each vertex we know to
which bin it belongs and what is the starting position of that bin. So we can put the current vertex to the
proper place, remember its position in the table pos, and increase the starting position of the bin we used.
The vertices are now sorted by their degrees. In the nal step of the initialisation phase we have to recover
the starting positions of the bins (29-31). We increased them several times in previous step, when we put
vertices into corresponding bins. It is obvious, that the changed starting position is the original starting
position of the next bin. To restore the right starting positions we have to shift the values in array bin for
one position to the right. We also have to reset the starting position of the bin 0 to value 1.

The cores decomposition, implementing the for each loop from the algorithm described above, is done
in the main loop (32-50) that runs over all vertices v of the graph g in the order, determined by the table
vert. The core number of the current Vertex v is the current degree of that vertex. This number is already
stored in table deg. For each neighbour u of vertex v with higher degree we have to decrease its degree by
1 and move it for one bin to the left. Moving vertex u for one bin to the left is an operation that can be
done in a constant time. First we have to swap the vertex u and the rst vertex in the same bin. We also
have to swap their positions in the array pos. Finally we increase the starting position of the bin (we
increase the previous and reduce the current bin for one element).

C. Time Complexity

Show that the described algorithm runs in time O(max(m; n)). To compute (09-15) the degrees of all
vertices we need time O(max(m; n)) since we have to consider each line at most twice. The bin sort (16-
31) consists of ve loops of size at most n with constant time O(1) bodies therefore it runs in time O(n).
The statement (33) requires a constant time and therefore contributes O(n) to the algorithm. The
conditional statement (35-48) also runs in constant time. Since it is executed for each edge of G at most
twice the contribution of (34-49) in all repetitions of (32-50) is O(max(m; n)). Summing up | the total
time complexity of the algorithm is O(max(m; n)). Note that in a connected network m n.

D. Adaption of the Algorithm for Directed Graphs

For directed simple graphs without loops only few changes in the implementation of the algorithm are
needed depending on the interpretation of the degree. In the case of in degree (out-degree) the function
in Neighbors in line 12 must return the next not yet visited in-neighbor (out-neighbor), and the function
in Neighbors in line 34 must return the next not yet visited out-neighbor (in-neighbor).If the degree is
defined as in-degree + out-degree, the maximum degree can be at most 2n. Basic approach for finding the
k smallest spanning trees We first find a minimum spanning tree of our graph, using the fast algorithm of
for general graphs or for planar graphs. Then we use Eppstein’s technique to reduce the problem to one
in which there are O(E) vertices and edges [E].

157 Eurasian Journal of Analytical Chemistry

This uses an algorithm for the sensitivity analysis of minimum spanning trees [Tl],[T2],[T3], and a
linear-time selection algorithm. Let Ti denote the i-th smallest spanning tree of the graph. Having found
7’1, we generate the k - 1 spanning trees T2, . . - , Tk one at a time. Each tree Ti with i > 1 will be derived
from some tree Tg, j < i, by a swap (ei, fi), in which a tree edge e is replaced by a nontree edge fi. So that no
tree is derived more than once, we use an inclusion-exclusion approach presented.

Associated with each Ti will be a best-swap structure R,, which we will implement in the next section
as an ambivalent data structure. We mention a few of its properties now. Structure R.j will represent all
spanning trees derivable from Ti by a sequence of swaps, and will identify a minimum-cost swap for Ti.
The algorithm will maintain a heap on the costs of the trees After setting up RI, the algorithm will perform
2(k - 1) updates of best-swap structures, along with k - 1 eztractmins and 2(k - 1) inserts. The time for all
heap operations can be reduced from O(h1og k) to O(k) by using the algorithm in [F2] to select the k-th
smallest value in a min-heap. Correct the costs of spanning trees derived n exclusion process form a min-
heap.

E. Dynamic 2-edge-connectivity in Embedded Planar Graphs

Use the edge-ordered topology tree as in section 3 as a basis for our data structure for maintaining 2-
edge-connectivity information in embedded planar graphs. In addition, use the partial and complete paths
as in section .As in section we shall maintain a modified path m(Pj) for each partial path Pj, but will
maintain different information in the corresponding edge-ordering tree. Between two consecutive
vertices 2 and y of m(4) we shall have an edge with a value bcinit. The value bcinit will be 0 if 2 and y
represent different vertices and 1 otherwise. Each leaf in an edge-ordering tree will contain the bcinit
values of the path edges to the left and right of the path vertex corresponding to the leaf. In each node of
the edge-ordering tree there will be a field project. This will either be null or the name of a vertex on Pj.
For an edge in the boundary set with endpoint U, proj(j, U) will be the first non-null project value on the
path from the root to the leaf representing the edge in the edge-ordering tree.

Also maintain a field distproj in each node such that the sum of the distproj values of nodes on a path
from the root to down to a node containing a non-null project value, where all ancestors have null project
values, is the distance on the partial path from proj(j,u) to one end of the partial path. This information is
used to identify best covering edges when two clusters 51 and 511 are unioned to give cluster. For
example, we identify the edge (if any) in the boundary set(s) of 41 whose endpoint U is such that proj(j,
U) is as far as possible from ~II on P, and adjust the somehow and alcove values of O(1og n) nodes in the
balanced tree for the path accordingly.

SOLUTION AND ANALYSIS
We experimentally evaluate the algorithms given in Section 3.1, Section 3.2, on graphs of various

structure. As a baseline, we evaluate our methods on a set of simple synthetic topologies, including graphs
having uniform random edge placement. Additionally, we utilize graphs based on real datasets from a
large-scale peer-to-peer system: the popular UUSee streaming television service [3].These graphs
represent a typical scenario where users select peers or servers with which to communicate based on
measured network path properties. The key measure of comparison for this study is the amount of
reduction in measurements required between hosts in the graph if we employ inference on the subgraphs
(components(_)) that our algorithms output and direct measurements on the remaining edges, compared
to performing all there quested direct measurements. We also report the cost of performing a single
inference on the entire graph. We give the running time of the spanning forest algorithm, and investigate
the values of its two key parameters (number of forests f and threshold score s). We also study the
relationship between sand the constant k of the inference mechanism.

CONCLUSION
We have investigated the network load induced by inference mechanisms, and presented efficient

algorithms to identify subgraphs where replacing direct measurements with inference is most
advantageous. Our results show that we achieve significant measurement savings with small-world
graphs, which represent popular peer-to-peer and distributed system measurement request patterns. We
demonstrate the ability to identify subgraphs of measurement graphs which see no cost benefit from
inference, and accordingly use more accurate direct measurements in those subgraphs. We analyze the
performance of our algorithms, and make recommendations for the discretionary parameter s provided
to the spanning forest and hybrid algorithms based on both theory and empirical results.

158 G. Michael et.al

REFERENCES
[1] Das, J., Das, M. P., & Velusamy, P. (2013). Sesbania grandiflora leaf extract mediated green

synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 265-270.

[2] Umanath, K.P.S.S.K., Palanikumar, K., & Selvamani, S. T. (2013). Analysis of dry sliding wear
behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Composites Part B:
Engineering, 53, 159-168.

[3] Udayakumar, R., Khanaa, V., Saravanan, T., & Saritha, G. (1786). Cross layer optimization for
wireless network (WIMAX). Middle-East Journal of Scientific Research, 16(12), 1786-1789.

[4] Kumaravel, A., & Rangarajan, K. (2013). Algorithm for automaton specification for exploring
dynamic labyrinths. Indian Journal of Science and Technology, 6(5S), 4554-4559.

[5] Pieger, S., Salman, A., & Bidra, A.S. (2014). Clinical outcomes of lithium disilicate single crowns
and partial fixed dental prostheses: a systematic review. The Journal of prosthetic
dentistry, 112(1), 22-30.

[6] Vijayaraghavan, K., Nalini, S.K., Prakash, N.U., & Madhankumar, D. (2012). One step green
synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver
somniferum. Colloids and Surfaces B: Biointerfaces, 94, 114-117.

[7] Khanaa, V., Mohanta, K., & Satheesh, B. (2013). Comparative study of uwb communications over
fiber using direct and external modulations. Indian Journal of Science and Technology, 6(6),
4845-4847.

[8] Khanaa, V., Thooyamani, K. P., & Udayakumar, R. (1798). Cognitive radio based network for ISM
band real time embedded system. Middle-East Journal of Scientific Research, 16(12), 1798-1800.

[9] Vijayaraghavan, K., Nalini, S.K., Prakash, N.U., & Madhankumar, D. (2012). Biomimetic synthesis of
silver nanoparticles by aqueous extract of Syzygium aromaticum. Materials Letters, 75, 33-35

[10] Caroline, M.L., Sankar, R., Indirani, R.M., & Vasudevan, S. (2009). Growth, optical, thermal and
dielectric studies of an amino acid organic nonlinear optical material: l-Alanine. Materials
Chemistry and Physics, 114(1), 490-494.

[11] Kumaravel, A., & Pradeepa, R. (2013). Efficient molecule reduction for drug design by intelligent
search methods. International Journal of Pharma and Bio Sciences, 4(2), B1023-B1029.

[12] Kaviyarasu, K., Manikandan, E., Kennedy, J., Jayachandran, M., Ladchumananandasiivam, R., De
Gomes, U. U., & Maaza, M. (2016). Synthesis and characterization studies of NiO nanorods for
enhancing solar cell efficiency using photon upconversion materials. Ceramics
International, 42(7), 8385-8394.

[13] Sengottuvel, P., Satishkumar, S., & Dinakaran, D. (2013). Optimization of multiple characteristics
of EDM parameters based on desirability approach and fuzzy modeling. Procedia Engineering, 64,
1069-1078.

[14] Anbuselvi S., Chellaram, С., Jonesh S., Jayanthi L., & Edward J.K.P. (2009). Bioactive potential of
coral associated gastropod, Trochus tentorium of Gulf of Mannar, Southeastern India. J. Med. Sci,
9(5), 240-244.

[15] Kaviyarasu, K., Ayeshamariam, A., Manikandan, E., Kennedy, J., Ladchumananandasivam, R.,
Gomes, U. U., & Maaza, M. (2016). Solution processing of CuSe quantum dots: Photocatalytic
activity under RhB for UV and visible-light solar irradiation. Materials Science and Engineering:
B, 210, 1-9.

[16] Kumaravel, A., & Udayakumar, R. (2013). Web portal visits patterns predicted by intuitionistic
fuzzy approach. Indian Journal of Science and Technology, 6(5S), 4549-4553.

[17] Srinivasan, V., & Saravanan, T. (2013). Reformation and market design of power sector. Middle-
East Journal of Scientific Research, 16(12), 1763-1767.

[18] Kaviyarasu, K., Manikandan, E., Kennedy, J., & Maaza, M. (2015). A comparative study on the
morphological features of highly ordered MgO: AgO nanocube arrays prepared via a
hydrothermal method. RSC Advances, 5(100), 82421-82428.

[19] Kumaravel, A., & Udhayakumarapandian, D. (2013). Consruction of meta classifiers for apple scab
infections. International Journal of Pharma and Bio Sciences, 4(4), B1207-B1213.

[20] Sankari, S. L., Masthan, K. M. K., Babu, N. A., Bhattacharjee, T., & Elumalai, M. (2012). Apoptosis in
cancer-an update. Asian Pacific journal of cancer prevention, 13(10), 4873-4878

159 Eurasian Journal of Analytical Chemistry

[21] Harish, B. N., & Menezes, G. A. (2011). Antimicrobial resistance in typhoidal salmonellae. Indian
journal of medical microbiology, 29(3), 223-229.

[22] Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S., Jaganathan, S. K.,
Ladchumananandasivam, R., & Aanand, J. S. (2017). Rare earth element (REE) lanthanum doped
zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. Journal
of Alloys and Compounds, 723, 1155-1161.

[23] Caroline, M. L., & Vasudevan, S. (2008). Growth and characterization of an organic nonlinear
optical material: L-alanine alaninium nitrate. Materials Letters, 62(15), 2245-2248.

[24] Saravanan T., Srinivasan V., Udayakumar R. (2013). A approach for visualization of
atherosclerosis in coronary artery, Middle - East Journal of Scientific Research, 18(12), 1713-
1717.

[25] Gokula Krishnan, C.A., & Dr. Suphalakshmi, A. (2017). An Improved MAC Address Based Intrusion
Detection and Prevention System in MANET Sybil Attacks. Bonfring International Journal of
Research in Communication Engineering, 7(1), 1-5.

[26] Kurian, S., & Franklin, R.G. (2013). Trustworthy Coordination of Web Services Atomic Transaction
for Net Banking. The SIJ Transactions on Advances in Space Research & Earth Exploration, 1(1), 6-
9.

[27] Dr.Gopinath, B., Kalyanasundaram, M., Karthika, V., & Pradeepa, M. (2018). Development of
Power Quality Event Using Diode Clamped Multilevel Inverter in Conjunction with AANF.
Bonfring International Journal of Software Engineering and Soft Computing, 8(1), 17-22.

[28] Dr. Chaturvedi, A., Bhat, T.A., & Kumar, V. (2013).Movement based Asynchronous Recovery
System in Mobile Computing System. The SIJ Transactions on Computer Networks &
Communication Engineering (CNCE), 1(3), 1-5.

[29] Jerin Jose, M., Akmal Jahan, S., Arunachalam, R., Karnan, R., & Kishore, V. (2017). Automobile
Accident Sensing Unit and Notifier using Arduino. The SIJ Transactions on Industrial, Financial &
Business Management (IFBM), 5(1), 5-8.

[30] Hoa, N.T., & Voznak, M. (2019). High Speed and Reliable Double Edge Triggered D- Flip-Flop for
Memory Applications. Journal of VLSI Circuits and Systems, 1(1), 13-17.

[31] Shamim, F.M., & Vishwakarma, S. (2016). Exploiting the Motion Learning Paradigm for
Recognizing Human Actions. Bonfring International Journal of Advances in Image Processing, 6(3),
11-16.

[32] Kumar, K.A., Sadulla, S., & A. Surendar, (2018). Statistical Analysis of Reliable and Secure
Transmission Gate based Arbiter Physical Unclonable Functions (PUFs).Journal of Computational
Information Systems, 14(3), 62 - 69.

[33] Puliyath, S. (2014). Advanced Secure Scan Design against Scan Based Differential Cryptanalysis.
International Journal of Advances in Engineering and Emerging Technology, 5(6), 274-279.

[34] Rinesh, S., and Jagadeesan, S. (2014). Detection and Localization of Multiple Spoofing Attackers in
Wireless Networks. Excel International Journal of Technology, Engineering and Management, 1(1),
17-20.

[35] Poongothai, S., Ilavarasan, R., & Karrunakaran, C.M. (2010). Simultaneous and accurate
determination of vitamins B1, B6, B12 and alpha-lipoic acid in multivitamin capsule by reverse-
phase high performance liquid chromatographic method. International Journal of Pharmacy and
Pharmaceutical Sciences, 2(4), 133-139.

[36] Udayakumar, R., Khanaa, V., & Saravanan, T. (2013). Synthesis and structural characterization of
thin films of SnO 2 prepared by spray pyrolysis technique. Indian Journal of Science and
Technology, 6(6), 4754-4757

[37] Anbazhagan, R., Satheesh, B., & Gopalakrishnan, K. (2013). Mathematical modeling and simulation
of modern cars in the role of stability analysis. Indian Journal of Science and Technology, 6(5S),
4633-4641.

[38] Caroline, M.L., & Vasudevan, S. (2009). Growth and characterization of bis thiourea cadmium
iodide: A semiorganic single crystal. Materials Chemistry and Physics, 113(2-3), 670-674.

[39] Sharmila, S., Jeyanthi Rebecca, L., & Das, M. P. (2012). Production of Biodiesel from Chaetomorpha
antennina and Gracilaria corticata. Journal of Chemical and Pharmaceutical Research, 4(11),
4870-4874.

160 G. Michael et.al

[40] Thooyamani, K.P., Khanaa, V., & Udayakumar, R. (2013). An integrated agent system for e-mail
coordination using jade. Indian Journal of Science and Technology, 6(6), 4758-4761.

[41] Caroline, M. L., Kandasamy, A., Mohan, R., & Vasudevan, S. (2009). Growth and characterization of
dichlorobis l-proline Zn (II): A semiorganic nonlinear optical single crystal. Journal of Crystal
Growth, 311(4), 1161-1165.

[42] Caroline, M.L., & Vasudevan, S. (2009). Growth and characterization of L-phenylalanine nitric
acid, a new organic nonlinear optical material. Materials Letters, 63(1), 41-44.

[43] Kaviyarasu, K., Xolile Fuku, Genene T. Mola, E. Manikandan, J. Kennedy, and M. Maaza.
Photoluminescence of well-aligned ZnO doped CeO2 nanoplatelets by a solvothermal
route. Materials Letters, 183(2016), 351-354.

[44] Saravanan, T., & Saritha, G. (2013). Buck converter with a variable number of predictive current
distributing method. Indian Journal of Science and Technology, 6(5S), 4583-4588.

[45] Parthasarathy, R., Ilavarasan, R., & Karrunakaran, C. M. (2009). Antidiabetic activity of Thespesia
Populnea bark and leaf extract against streptozotocin induced diabetic rats. International Journal
of PharmTech Research, 1(4), 1069-1072.

[46] Hanirex, D. K., & Kaliyamurthie, K. P. (2013). Multi-classification approach for detecting thyroid
attacks. International Journal of Pharma and Bio Sciences, 4(3), B1246-B1251

[47] Kandasamy, A., Mohan, R., Lydia Caroline, M., & Vasudevan, S. (2008). Nucleation kinetics, growth,
solubility and dielectric studies of L‐proline cadmium chloride monohydrate semi organic
nonlinear optical single crystal. Crystal Research and Technology: Journal of Experimental and
Industrial Crystallography, 43(2), 186-192.

[48] Srinivasan, V., Saravanan, T., Udayakumar, R., & Saritha, G. (2013). Specific absorption rate in the
cell phone user’s head. Middle-East Journal of Scientific Research, 16(12), 1748-50.

[49] Udayakumar R., Khanaa V., & Saravanan T. (2013). Chromatic dispersion compensation in optical
fiber communication system and its simulation, Indian Journal of Science and Technology, 6(6),
4762-4766.

[50] Vijayaragavan, S.P., Karthik, B., Kiran, T.V.U., & Sundar Raj, M. (1990). Robotic surveillance for
patient care in hospitals. Middle-East Journal of Scientific Research, 16(12), 1820-1824.

	INTRODUCTION
	TERMINOLOGY
	SOLUTION AND ANALYSIS
	CONCLUSION
	REFERENCES

