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ABSTRACT 
In this study, quantitative structure–retention relationship (QSRR) methodology was 
employed for modeling of gas chromatographic retention time for 74 pesticides. Stepwise 
multiple linear regression (SW-MLR) was used for the selection of most important 
descriptors. Multiple linear regression (MLR) and genetic programming (GP) were utilized 
to develop linear and symbolic regression equation models, respectively. Inspection to 
statistical parameters of developed MLR and GP models indicates symbolic regression 
equation via GP can be selected as the best fitted model. For this model, the square 
correlation coefficients (R2) were 0.943 and 0.911, and the root-mean square errors (RMSE) 
were 2.56 and 2.77 for the training and test sets, respectively. The built GP model was 
assessed by leave one out cross-validation (Q2cv = 0.79, SPRESS = 2.57) as well as external 
validation. In addition, the result of sensitivity analysis of GP model suggest structural 
features and polarity are important factors responsible for gas-chromatographic retention 
time values of studied pesticides.  
 
Keywords: quantitative structure–retention relationships, pesticide, retention time, 
multiple linear regression, genetic programming 

 

INTRODUCTION 

Pesticides are a group of organic compounds that are used in most sectors of the agricultural 
production on a large scale. These compounds prevent or reduce losses by pests and can 
improve quality and cosmetic appeal of the product [1, 2]. Pesticides can be classified based 
on functional groups in their molecular structure or their specific biological activity on target 
[3, 4]. Despite extensive use of these chemicals there are serious concerns about health risks 
arising for the general population from residues on food and drinking water [5, 6]. Most of 
these compounds have low rates of biodegradation and tendency to bioaccumulation that 
could make an environmental and human health risks [7-9].  
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Although the agricultural soil is the primary recipient of pesticide residues, water bodies 
that are adjacent to these areas are usually the ultimate recipient for these chemicals [10]. 
Pesticide residues frequently reported as common organic contaminants worldwide in surface 
and ground water [11-17]. Today, identification and quantification of pesticides in soil, air and 
water is very important field for chemist. 

The traditional methods for determining residues of pesticides in environmental 
samples involve extraction that followed by gas chromatography (GC) analysis with nitrogen-
phosphorus (NPD) or electron-capture detection (ECD) [18, 19]. The identification of separated 
pesticides can be done by comparison of their chromatographic retention with standard 
chemicals or from their MS spectra. Thought experimental determination of chromatographic 
retention of all pesticides is costly and time-consuming, therefore, developing of theoretical 
methods for estimation of this parameter for decreasing the time and costs of this experiment 
are very interesting and necessary. Among this method quantitative structure-retention 
relationship (QSRR) is a mathematical model based on the principle that the chromatographic 
retention of molecules is related to their structural features of molecules (molecular 
descriptors) which the obtained model can used to predict the retention for another 
compounds in the absence of experimental data [20-22]. 

There are some methods to related molecular descriptors to interested properties such 
as multiple linear regression (MLR), artificial neural network (ANN), partial least square 
(PLS), support vector machine (SVM) and genetic programming (GP). Among them GP is a 
new modeling method that mainly differs from other data driven models because it defines 
an explicit functional relationship between independent variables and desired property by 
optimizing forms and coefficients of equations simultaneously [23-25]. This is a symbolic 
regression tools that in compare to traditional regression method such as multiple linear 
regression there is no force to make about underlying relationship. Accordingly, this work 
attempt to offer a reliable QSRR model on gas-chromatographic retention time (𝑡𝑡𝑟𝑟𝑟𝑟) of some 
pesticides which were found in drinking water. Our goal was to create a simple, accurate and 
interpretable equation as QSRR model. Hence, MLR and GP methods were employed for 
developing linear and symbolic regression equations, respectively and compare prediction 
ability of them. 

MATERIALS AND METHODS 

Data set 

The experimental values of gas chromatographic retention time for 74 pesticides were 
found from reference [26]. These compounds including some pesticides were analyzed in 
drinking water by gas chromatography analysis with mass spectrometry (GC–MS) (DB-5 
capillary column (30 m ×0.25 mm ×0.25 m; Agilent, USA)). The chemical name of database in 
the present work and their experimental values of 𝑡𝑡𝑅𝑅 are listed in Table 1. The values of 
retention were varied from 0 to 50.36 minutes for structure 1 (Teflubenzuron) and 74 
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(Deltamethrin), respectively. The chemicals in the data set were divided into the training and 
test sets by Y-ranking method. In this way, the data were sorted according to their 𝑡𝑡𝑅𝑅 values 
and then the training (60 compounds) and test (14 compounds) sets were chosen from the 
sorted lists with desired distances of each other. Training set was employed to model 
development and test set was used to evaluate the predictability of obtained model. 

Table 1. The data set and corresponding experimental, MLR and GP predicted values of retention times 
(tR) for studied pesticides 

NO. Compound name tR (min) 

Experimental 
tR (min) 

MLR 
tR (min) 

GP 
1 Teflubenzuron 0 7.78 0.32 
2 Diphenylamine 12.23 7.33 11.76 
3a Phorate 13.73 17.90 19.50 
4 Thiometon 14.26 19.53 18.33 
5 Dimethoate 14.65 16.79 15.95 
6 Beta-HCH 15.56 14.78 15.51 
7 Lindane HCH 15.74 14.50 14.90 
8a Quintozene 15.98 14.71 13.49 
9 Diazinon 16.39 18.39 17.19 

10 Disulfoton 16.75 19.45 20.11 
11 Delta-HCH 17.13 14.78 15.51 
12 Chlorothalonil 17.32 16.76 14.47 
13a Pirimicarb 17.93 21.09 16.93 
14 Chlorpyrifos-methyl 19.31 20.29 19.89 
15 Carbaryl 19.7 22.33 18.90 
16 Alachlor 19.77 22.72 23.19 
17 Metalaxyl 20.10 19.34 19.04 
18a Fenitrothion 21.10 21.03 23.10 
19 Pirimiphos methyl 21.17 21.78 23.22 
20 Dichlofluanid 21.62 19.29 23.80 
21 Malathion 21.77 20.11 22.08 
22 Aldrin-R 22.04 25.60 22.83 
23a Fenthion 22.39 25.37 25.03 
24 Chlorpyrifos 22.52 21.05 25.58 
25 Dicofol 22.73 30.29 30.17 
26 Triadimefon 22.77 27.49 27.26 
27 Cyprodinil 24.35 25.20 25.28 
28a Heptachlor-epoxide (Cis) 24.83 24.53 24.56 
29 Penconazole 24.93 29.69 27.31 
30 Heptachlor-epoxide(Trans) 25.15 23.30 23.51 
31 Captan 25.44 22.12 21.56 
32 Triadimenol 25.79 28.02 27.68 
33a Fipronil 25.8 26.52 25.18 
34 Methidathion 26.71 25.64 26.86 
35 o,p-DDE 26.99 29.84 30.53 
36 Endosulfan-alpha 27.47 27.81 28.56 
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Diversity analysis 

Diversity analysis was performed to make sure the structures in the training and test 
sets are representative of both data set [27, 28]. Distance score between two different 

Table 1 (continued). The data set and corresponding experimental, MLR and GP predicted values of 
retention times (𝑡𝑡𝑅𝑅) for studied pesticides 

NO. Compound name tR (min) 

Experimental 
tR (min) 

MLR 
tR (min) 

GP 
37 Butachlor 27.82 29.82 31.19 
38a Fenamiphos 28.47 25.76 26.90 
39 Imazalil 28.93 30.64 27.48 
40 Profenofos 29.16 28.26 29.47 
41 p,p-DDE 29.42 30.07 30.68 
42 Carboxin 29.86 27.72 29.18 
43a Oxadiazon 29.86 26.49 29.34 
44 o,p-DDD 30.09 29.14 30.27 
45 Buprofezin 30.24 33.76 32.19 
46 Endosulfan-beta 31.88 27.81 28.56 
47 p,p-DDD 32.75 28.55 29.35 
48a o,p-DDT 32.76 30.27 33.10 
49 Ethion 33.21 31.384 30.32 
50 Triazophos 34.31 30.92 33.01 
51 Benalaxyl 35.02 35.71 36.42 
52 Edifenphos 35.14 35.47 34.73 
53a Propiconazole I 35.45 38.04 36.55 
54 Fenhexamid 35.62 27.13 35.16 
55 Propiconazole II 35.94 38.05 36.57 
56 Tebuconazole 36.77 33.66 31.45 
57 Iprodione 38.81 32.19 31.25 
58a Phosmet 39.05 35.98 34.20 
59 Bifenthrin 39.57 38.69 39.19 
60 Methoxychlor 39.73 38.64 39.11 
61 Fenpropathrin 39.94 39.41 37.95 
62 Azinphos-methyl 41.39 35.54 37.90 
63a Phosalone 41.41 37.00 37.44 
64 Amitraz 42.29 41.26 45.76 
65 Landa Cyhalothrin 42.68 42.13 44.13 
66 Fenarimol 42.85 42.48 41.67 
67 Bitertanol 44.34 43.82 43.52 
68a Permethrin I 44.56 48.93 47.65 
69 Permethrin II 44.89 49.10 47.84 
70 Prochloraz 45.26 47.85 44.40 
71 Fenbuconazole 45.98 45.65 44.45 
72 Cypermethrin-alpha 47.00 44.58 44.49 
73 Esfenvalerate 48.60 51.73 52.09 
74 Deltamethrin 50.36 49.43 49.10 
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compounds of 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑗𝑗 (𝑑𝑑𝑖𝑖𝑗𝑗) can be measured by euclidean distance norm in variable space 
from following equation (1):  

𝑑𝑑𝑖𝑖𝑗𝑗 = �𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑗𝑗� = ���𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑗𝑗𝑖𝑖�
2

𝑚𝑚

𝑖𝑖=1

 (1) 

In above equation, 𝑘𝑘 is the number of variable in descriptor matrix 𝑋𝑋, and 𝑚𝑚 is the 
number of compounds. The 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑗𝑗𝑖𝑖 parameters are the 𝑘𝑘th descriptors of 𝑖𝑖 and 𝑗𝑗 
compounds, respectively. In the following the mean distance of one molecule to others (di) 
was calculated as follow:  

di =
∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑚𝑚
𝑗𝑗=1

𝑚𝑚 − 1
    𝑖𝑖 = 1,2, … ,𝑚𝑚 (2) 

Then the mean distances among molecules in descriptor space were normalized within 
the range of 0-1 and plotted against the values of the 𝑡𝑡𝑅𝑅 (Figure 1). Inspection to this figure 
illuminates that the structures of molecules are diverse in training and test sets and represent 
of the whole data set. 

Descriptors calculation and selection 

The purpose of QSRR model is to quantitatively correlate the structural variation of 
studied chemicals to their retention time by applying theoretical molecular descriptors. In the 
first step of QSRR modeling the structures of these chemicals were drawn and optimized by 
semiemperical AM1 methods using Hyperchem program (version 7) [29]. Then, molecular 
descriptors for each molecule were calculated by PaDEL (version 2.11) [30], Codessa (version 

 
Figure 1. The results of diversity analysis 
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2.0) [31] and Dragon (version. 3.0) [32] softwares. Then all calculated descriptors were screened 
for detecting constant or near constant descriptors to removing them. Thought, some 
generated descriptors for each molecule, encoded similar information, therefore, it was 
desirable to eliminate those that show high correlation (R > 0.90) with each other. Between 
these two descriptors, the one that was lower correlation with the desired properties was 
removed. At the end of this step stepwise multiple linear regression (SW-MLR) was used to 
select of the most relevant descriptors from remaining ones. At this step seven descriptors 
were selected from 992 remaining descriptors, which their name and definitions were shown 
in Table 2. These descriptors were used for developing linear and symbolic regression 
equations, respectively by MLR and GP method for QSRR modeling.  

The variation inflation factors (𝑉𝑉𝑉𝑉𝑉𝑉) were calculated to check any multi-collinearity 
among the seven selected descriptors by following equation: 

𝑉𝑉𝑉𝑉𝑉𝑉 =
1

1 − 𝑅𝑅2
 (3) 

In the above equation, 𝑅𝑅 is correlation coefficient of multiple regression between each 
descriptor and the other descriptors in the predictive model. If 𝑉𝑉𝑉𝑉𝑉𝑉 value is being equal to 1, it 
indicates that does not exit intercorrelation for each descriptor in model; if it falls between 1.0 
and 5.0, it reflects that the model is acceptable, and if 𝑉𝑉𝑉𝑉𝑉𝑉 becomes larger than 10.0, the model 
is unstable due to high colliniearity among selected descriptors and should be recheck [33]. 
The calculated values of 𝑉𝑉𝑉𝑉𝑉𝑉 among selected descriptors are shown in Table 2, which indicate 
that these descriptors are independent. 

Genetic programming (GP) 

Conventional regression techniques optimize the coefficients for a pre-specified form of 
the model. According to this, prediction ability of obtained polynomial models (based on 
MLR) often is limited. To overcome this drawback, symbolic regression via genetic 
programming (GP) recently gained as new model fitting tools [24]. Symbolic regression 
attempts to uncover the intrinsic relationships of the data set and optimize both form and 
coefficients of model with searching the space of mathematical expressions. 

GP basically is a symbolic regression modeling tool with the capability of generating 
mathematical equation which developed by Koza [25]. This method is based on principle of 
Darwinian’s theory and done by evolutionary algorithms [23]. In GP the individuals 
(mathematical functions) represented as a tree structure with nodes and terminals that 
evolutionary process is working over them. The nodes correspond to various mathematical 
operators with adjustable weights. The weight defines probability of operator for choosing in 
function (greater probability with increasing weight) while the terminals of branches are 
typically variables (descriptors) or constants values. For evolutionary process firstly random 
initial population of individual (mathematical equation) were generated by defining 
population size and choosing selection method [25, 34]. Several kinds of selection methods can 
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be used for choosing an individual from population. Skrgic selection (SS) is one of these 
methods that based on probability graphs of selection [35]. In this method individual with 
maximum fitness in population most probably selected for later breeding. In the next step, 
new generations of equation created by mutation, crossover and reproduction. Then the fitness 
of each equation is evaluated using the fitness function. These steps are repeated until a 
desired function is achieved then the obtained model was evaluated by different methods [25, 
34]. Simultaneous optimization of forms and coefficients of equations increase predictive 
ability of the model. Also, in comparison to MLR there is no force to make linear or nonlinear 
relationship between independent variables and retention time [24]. 

RESULT AND DISCUSSION 

Modeling 

The present study investigates the use of MLR and GP for developing QSRR model as 
mathematical regression equation to predict the gas chromatographic retention times of some 
pesticides. Multiple linear regression is one of the earliest and commonest methods for 
generation linear equation as QSRR model [36, 37]. MLR model is a mathematical equation 
which quantitatively related the selected descriptors as independent variables and studied 
retention times. The equation and statistical parameters of developed seven descriptors by 
MLR are shown in Table 2. 

The selected descriptors were also used to develop GP model. As noted earlier, GP is a 
symbolic regression tools that capable to generate an interpretable mathematical equation as 
best fitted model. The GPdotNET (version 3.0) [38] software was used for genetically 
developing GP model. In GP model, evolutionary process was employed for optimization of 
functional form and the coefficients for predicted GP model by choosing suitable values of 
various control parameters (Table 3). The quality of the predictive equation can be improved 
by changing values of these parameters.  

Table 2.  Specification of multiple linear regression model 

No. Descriptor name Notation Coefficient Se VIF 
 

  Constant 0.58 0.00 - 

1 solvation connectivity index of order 1 X1sol 0.22 ±0.01 1.64 
2 Balaban centric index BAC -0.07 ±0.01 1.48 
3 2D-autocorrelation of lag 2 weighted by ionization 

potential AATSC2i 0.09 ±0.01 2.32 
4 Geary autocorrelation of lag 5 weighted by intrinsic state GATS5s 0.03 ±0.01 1.41 
5 Maximum number of hydrogen atom hmax -0.08 ±0.01 2.42 
6 Radial Distribution Function - 040 / weighted by atomic 

mass 
RDF040

m -0.04 ±0.00 1.22 
7 Broto-Moreau autocorrelation of lag 8 weighted by 

gasteiger charge ATSC8c 0.03 ±0.01 1.24 
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The fitness of each solution (mathematical equation) is evaluated and monitored using 
RMSE (root mean square error) as a fitness function. The best generated GP equation was 
shown in the following equation (4): 

𝑡𝑡𝑅𝑅(min) =

⎝

⎜
⎜
⎜
⎜
⎛��4.37− �𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵8𝑐𝑐

4.37− 𝐺𝐺𝐵𝐵𝐴𝐴𝐴𝐴5𝑠𝑠�� − � 𝐵𝐵𝐵𝐵𝐵𝐵
(4.37 + 7.73) + � 7.73

𝐵𝐵𝐴𝐴𝐴𝐴8𝑐𝑐�
��+�𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠 + �𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠 + (𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵2𝑖𝑖 + 𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠)

� 𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠�+ (4.37− 0.27)
��

�
�(𝑅𝑅𝑅𝑅𝑉𝑉040𝑚𝑚+ ℎ𝑚𝑚𝑚𝑚𝑥𝑥) ∗ (4.37− 𝐵𝐵𝐵𝐵𝐵𝐵)� − �(𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵2𝑖𝑖 + 𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠) + (𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠 ∗ ℎ𝑚𝑚𝑚𝑚𝑥𝑥)�

� 𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠
𝐺𝐺𝐵𝐵𝐴𝐴𝐴𝐴5𝑠𝑠 + 𝑅𝑅𝑅𝑅𝑉𝑉040𝑚𝑚� + �(ℎ𝑚𝑚𝑚𝑚𝑥𝑥 + 𝑋𝑋1𝑠𝑠𝑠𝑠𝑠𝑠) + 7.73�

� + 7.73

⎠

⎟
⎟
⎟
⎟
⎞

 (4) 

Then predictively and robustness of developed MLR and GP models were evaluated by 
several validation methods. The resulted statistical parameters of these tests are shown in 
Table 4. By comparison of these parameters it was concluded that GP model was superior 
over MLR.  

Therefore, further investigation was focused on GP model. The GP model was used to 
predict the retention time of training and test sets. These calculated values were shown in 
Table 1. The plot of the GP predicted versus experimental values of 𝑡𝑡𝑅𝑅 for the training and test 
sets was shown in Figure 2, which indicates good correlation among them (𝑅𝑅𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡2 = 0.943 
and 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = 0.911). Moreover, the residuals of these predicted were plotted against the 
experimental values of the retention time (Figure 3). Random propagation of the residuals on 
both sides of zero line indicates there is no systematic error in developed GP model. 

Table 3.  The optimal values of control parameters for GP model 

Control parameters Optimal values 
Function set  + , −,  * ,  / , (1/x) 
Weights of function set 3, 3, 2, 2, 1 
Population size  2000 
Selection method Skrgic selection (SS) 
Crossover  0.9 
Mutation  0.4 
Fitness function  RMSE 

 

Table 4.  The statistical parameters for MLR and GP models 

Model R2 training R2 test RMSE training RMSE test 
MLR 0.915 0.898 3 . 13 2.95 
GP 0.943 0.911 2.56 2.77 
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Models validation 

Validation of the obtained model is a very important step in QSPR (quantitative 
structure-property relationship) studies. Leave one out (LOO) cross validation procedure is 
one of method that applied for evaluation of a QSPR model. In LOO method, the data each of 

 
Figure 2. Comparison between predicted and experimental values of retention time by GP model 

 
Figure 3. Residuals of predicted vs. the experimental values of retention times 
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molecule in the training set is removed and the model was expanded on the remained 
molecules then the resulting model was employed to predict the intended properties of 
removing molecule. This procedure is repeated for all molecules of training set and then the 
cross validated correlation coefficient (𝑄𝑄𝑐𝑐𝑐𝑐2 ) and standard deviation based on predicted 
residual sum of square (𝐴𝐴𝑆𝑆𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴) calculated by following equations:  

𝑄𝑄𝑐𝑐𝑐𝑐2 = 1 −
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦0𝑖𝑖)2

∑(𝑦𝑦0𝑖𝑖 − 𝑦𝑦𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡)2 
 

(5) 

𝐴𝐴𝑆𝑆𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴 = �∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦0𝑖𝑖)2

𝑛𝑛 − 𝑘𝑘 − 1
 

 
(6) 

In above equations, 𝑦𝑦𝑖𝑖, 𝑦𝑦0𝑖𝑖 and 𝑦𝑦𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 are the predicted, experimental and mean values 
of experimental property, respectively; 𝑛𝑛 is the number of compounds in the training set and 
𝑘𝑘 is the number of descriptors in the model [39]. The calculated values of 𝑄𝑄𝑐𝑐𝑐𝑐2  and 𝐴𝐴𝑆𝑆𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴 for 
leave one out cross validation test for MLR model were 0.78 and 2.94 and for GP model were 
0.79 and 2.75, respectively, which demonstrate the robustness of these models. 

Applicability domain 

Applicability domain (AD) analysis was employed to determine model is capable for 
prediction the property of new compounds with unavailable experimental data that defined 
as the response and chemical structure spaces which reliable model can be predicted [40]. In 
this study, leverage approach and William plot were employed to indicate the applicability 
domain of model. The leverage or hat value is calculated as: 

ℎ𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑇𝑇(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑥𝑥𝑖𝑖 (7) 
where ℎ𝑖𝑖 is the leverage of the compound 𝑖𝑖 in the descriptor space, 𝑥𝑥𝑖𝑖 is the descriptor raw 
vector, 𝑋𝑋 is matrix of descriptor and superscript 𝐴𝐴 refers to the transpose of the vector and 
matrix, respectively. The warning leverage ℎ∗ is constant at 3(𝑝𝑝+1)

𝑡𝑡
 that 𝑝𝑝 is the descriptors 

number in the model and 𝑛𝑛 is the compounds number in training set. The standardized 
residuals were plotted against the leverage values to display the AD of a model for training 
and test sets that limited by ±3 times of standardized residuals (outlier of response) and 
warning ℎ∗, respectively [40]. The molecules with standardized residuals out of this range and 
or leverage greater than ℎ∗ = 0.40 are considered as out of AD of models. As can be seen in 
Figure 4 one molecule 54 (Fenhexamid) from training set are identified as outliers according to 
its ℎ∗ value. The anomalous behavior of this compound could be originated from its natures 
and molecular structures. 

Descriptors interpretation  

Sensitivity analysis (SA) was carried out on the GP model to determine the relative 
importance of descriptors in the QSRR model. In this method, the differences between the 
RMSE of the complete model and obtained root mean square error when the value of 𝑖𝑖th 
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descriptor was set at zero were calculated (RMSE) and shown as Rmdiffi. Each descriptor 
which causes greater Rmdiffi value is more important [41]. The results of sensitivity analysis 
on the GP model was shown in Figure 5 which indicated that the importance orders of 
descriptors are; GATS5s  ~  AATSC2i ~  BAC > X1sol > hmax > RDF040m  ~  ATSC8c. 

Among selected descriptors, GATS5s, AATSC2i and BAC are the most important 
descriptors that effects on the chromatographic retention time of studied pesticides. GATS5s 
and AATSC2i belonged to 2D autocorrelations type descriptors which calculated between atoms 
separated by 5 and 2 chemical bonds adjusted for the intrinsic state and ionization potential, 

 
Figure 4. William plot for GP model (h*=0.4) 

 
Figure 5. Sensitivity analysis plot for GP model 
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respectively [30, 42, 43]. Balaban centric index (BAC) is centric index type descriptor that reflect 
the topology of molecules in tree structure which view from the center and measure molecular 
branching [44, 45]. The next descriptor appearing in the model is X1sol. This descriptor is a 
connectivity indices type which counts solvation connectivity index of order 1 [45]. hmax is the 
next descriptor which belong to Atom type electrotopological state descriptor and defined as 
maximum number of hydrogen atom [30]. RDF040m and ATSC8c are the last descriptors 
appearing in the model with the same effects on the retention time. RDF040m is one of the 
burden-CAS-university of Texas (BCUT) descriptors that submitted as signal 40, weighted by 
atomic masses [45, 46] while ATSC8c belonged to 2D autocorrelations type descriptors which 
Broto-Moreau autocorrelation of lag 8 weighted by gasteiger charge [30, 43]. Inspection to these 
descriptors indicates that the topological structure and polarity of pesticides play significant 
role on their gas-chromatographic retention times. 

CONCLUSION 

The present study investigates the use of MLR and GP methods for developing linear 
and symbolic equations as QSRR models for prediction of gas chromatographic retention time 
of some pesticides. Comparison of statistical parameters of developed models indicated that 
symbolic regression equation via GP can be selected as best fitted model. The superiority of 
GP model indicates that there is some nonlinear relationship between selected descriptors and 
retention time of these chemicals. The sensitivity analysis of GP equation indicated that the 
structural features and polarity of studied pesticides are important factors responsible for the 
GC retention of these chemicals on DB-5 capillary column. 
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