
      Eurasian J Anal Chem 8(2): 50-63, 2013 

 

Linear and nonlinear quantitative structure linear retention indices 
relationship models for essential oils 

Hadi Noorizadeh* 

Chemometrics Lab, Department of Chemistry, Faculty of Science, Islamic Azad University, Ilam Branch, Iran 

Received: 30/07/2011; Accepted: 07/10/2011 

Abstract 
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS) and 
kernel PLS (GA-KPLS) techniques were used to investigate the correlation between linear retention 
indices (LRI) and descriptors for 101 diverse compounds in essential oils of six Stachys species 
which obtained by gas chromatography/electron impact mass spectrum (GC-EIMS). The correlation 
coefficient LGO-CV (Q2) between experimental and predicted LRI for training and test sets by GA-
MLR, GA-PLS and GA-KPLS was 0.936, 0.942 and 0.967 (for 80 compounds), 0.860, 0.871 and 
0.919 (for 21 compounds), respectively. This indicates that GA-KPLS can be used as an alternative 
modeling tool for quantitative structure–retention relationship (QSRR) studies. 
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1. Introduction 

An essential oil is a volatile mixture of organic compounds derived from odorous plant 
material by physical means [1]. The composition of essential oil has been extensively 
investigated because of its commercial interest in the fragrance industry (soaps, colognes, 
perfumes, skin lotion and other cosmetics), in aromatherapy (relaxant), in pharmaceutical 
preparations for its therapeutic effects as a sedative, spasmolytic, antiviral and antibacterial 
agent [2]. Recently it has also been employed in food manufacturing as natural flavouring for 
beverages, ice cream, candy, baked goods and chewing gum. The constituents of an essential 
oil may be classified into two principal groups: (a) hydrocarbons (terpenes, sesquiterpenes 
and diterpenes); (b) oxygenated compounds derived from these hydrocarbons including 
alcohols, aldehydes, esters, kethons, phenols, oxides, etc [1]. Salvia genus has about 900 
species, and is widespread throughout the world. This genus is represented in Turkish flora, 
by 89 species and 97 taxa, 45 of which are endemic [3]. From Turkish Salvia species many 
antibacterial [4], cytotoxic [5], antioxidant [6] and antituberculous [7] compounds, as well as 
cardioactive terpenoids, have been isolated. The constituents of the essential oils of three 
Salvia species from Turkish flora includes: monoterpene hydrocarbons, oxygenated 
monoterpenes, sesquiterpene hydrocarbons, diterpenes, not iso-prenoid compounds and 
oxygenated sesquiterpenes. These entire compounds have been identified by gas 
chromatography/electron impact mass spectrum (GC/EIMS). 

GC/EIMS is the main method for identification of these volatile plant oils. To increase 
the reliability of the MS identification, comprehensive two-dimensional GC–MS can be used. 
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This technique is based on two consecutive GC separations, typically according to boiling 
point and polarity [8]. The compounds are identified by comparison of retention indices with 
those reported in the literature and by comparison of their mass spectra with libraries or with 
the published mass spectra data [9]. Chromatographic retention for capillary column gas 
chromatography is the calculated quantity, which represents the interaction between 
stationary liquid phase and gas-phase solute molecule. This interaction can be related to the 
functional group, electronic and geometrical properties of the molecule [10, 11]. 

Mathematical modeling of these interactions helps chemists to find a model that can 
be used to obtain a deep understanding about the mechanism of interaction and to predict the 
retention indices of new or even unsynthesized compounds [12]. Building retention prediction 
models may initiate such theoretical approach, and several possibilities for retention 
prediction in GC. Among all methods, quantitative structure-retention relationships (QSRR) 
are most popular. In QSRR, the retention of given chromatographic system was modeled as a 
function of solute (molecular) descriptors. A number of reports, dealing with QSRR retention 
indices calculation of several compounds, have been published in the literature [13-15]. 

The QSRR models apply to multiple linear regression (MLR) and partial least squares 
(PLS) methods often combined with genetic algorithms (GA) for feature selection [16-17].  
Because of the complexity of relationships between the property of molecules and structures, 
nonlinear models are also used to model the structure–property relationships. In the recent 
years, nonlinear kernel-based algorithms as kernel partial least squares (KPLS) have been 
proposed [18, 19]. The basic idea of KPLS is first to map each point in an original data space 
into a feature space via nonlinear mapping and then to develop a linear PLS model in the 
mapped space. According to Cover’s theorem, nonlinear data structure in the original space is 
most likely to be linear after high-dimensional nonlinear mapping [20]. Therefore, KPLS can 
efficiently compute latent variables in the feature space by means of integral operators and 
nonlinear kernel functions. Compared to other nonlinear methods, the main advantage of the 
kernel based algorithm is that it does not involve nonlinear optimization. It essentially 
requires only linear algebra, making it as simple as the conventional linear PLS. In addition, 
because of its ability to use different kernel functions, KPLS can handle a wide range of 
nonlinearities.  
2. Experimental methods 

2.1. Data set 
Linear retention indices of the essential oils of three different Salvia species [Salvia 

aucheri var. aucheri (endemic), Salvia aramiensis and Salvia pilifera (endemic)] was studied 
by GC–EIMS, which contains 101 compounds[21] (see Table.1). This set were measured at 
the same condition with the DB-5 capillary column (30 m 0.25 mm; coating thickness 0.25 

m) and a Varian Saturn 2000 ion trap mass detector. The linear retention indices of these 
compounds were decreased in the range of 1672 and 802 for both Bulnesol and Hexanal, 
respectively.  

In order to evaluate the generated models, we used leave-group-out cross validation 
(LGO-CV). This methodology systematically removed one group data at a time from the data 
set. A QSRR model was then constructed on the basis of this reduced data set and 
subsequently used to predict the removed data set. This procedure was repeated until a 
complete set of predicted was obtained. 
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Table 1. The data set and the corresponding observed and predicted LRI values by GA-KPLS 
for the training and test set. 

No Name LRI Exp LRI Cal RE AbsE 
 Training set     

1 Hexanal 802 841 4.86 39 
2 Tricyclene 927 953 2.80 26 
3 -Pinene 939 957 1.92 18 
4 -Fenchene 953 922 3.25 31 
5 Sabinene 975 929 4.72 46 
6 -Pinene 978 986 0.82 8 
7 1-Octen-3-ol 979 1028 5.01 49 
8 3-Octanol 990 1039 4.95 49 
9 2-Octanol 995 1022 2.71 27 

10 p-Mentha-1,7(8)-diene 1004 987 1.69 17 
11 -Terpinene 1017 1044 2.65 27 
12 Limonene 1029 1038 0.87 9 
13 -Phellandrene 1030 1041 1.07 11 
14 1,8-Cineole 1031 1023 0.78 8 
15 (Z)- -Ocimene 1037 1023 1.35 14 
16 -Terpinene 1060 1048 1.13 12 
17 cis-Sabinene hydrate 1070 1097 2.52 27 
18 trans-Linalool oxide 1073 1086 1.21 13 
19 cis-Linalool oxide 1087 1092 0.46 5 
20 Terpinolene 1089 1049 3.67 40 
21 trans-Sabinene hydrate 1098 1084 1.28 14 
22 3-Octyl acetate 1113 1067 4.13 46 
23 trans-Thujone 1114 1099 1.35 15 
24 cis-p-Menth-2-en-1-ol 1122 1147 2.23 25 
25 trans-p-Mentha-2,8-dien-1-ol 1123 1128 0.45 5 
26 trans-p-Menth-2-en-1-ol 1141 1180 3.42 39 
27 Camphor 1146 1132 1.22 14 
28 Pinocarvone 1165 1181 1.37 16 
29 -Terpineol 1166 1257 7.80 91 
30 Borneol 1169 1206 3.17 37 
31 Terpinen-4-ol 1177 1138 3.31 39 
32 p-Cymen-8-ol 1183 1201 1.52 18 
33 -Terpineol 1189 1187 0.17 2 
34 Myrtenal 1194 1169 2.09 25 
35 cis-Piperitol 1196 1221 2.09 25 
36 -Terpineol 1199 1296 8.09 97 
37 cis-p-Mentha-1(7),8-diene-2-ol 1231 1252 1.71 21 
38 Piperitenone 1253 1242 0.88 11 
39 trans-Myrtanol 1261 1272 0.87 11 
40 Bornyl acetate 1289 1334 3.49 45 
41 trans-Sabinyl acetate 1291 1324 2.56 33 
42 Carvacrol 1299 1319 1.54 20 
43 Piperitenone 1343 1428 6.33 85 
44 -Cubebene 1351 1363 0.89 12 
45 Eugenol 1359 1397 2.80 38 
46 -Ylangene 1375 1392 1.24 17 
47 -Copaene 1377 1371 0.44 6 
48 -Bourbonene 1388 1369 1.37 19 
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Table 1 (continiued) 

No Name LRI Exp LRI Cal RE AbsE 
49 Z-Jasmone 1393 1358 2.51 35 
50 (E)-Caryophyllene 1419 1440 1.48 21 
51 Aromadendrene 1441 1454 0.90 13 
52 (Z)-b-Farnesene 1443 1427 1.11 16 
53 -Humulene 1455 1476 1.44 21 
54 Geranylacetone 1456 1583 8.72 127 
55 -Muurolene 1480 1471 0.61 9 
56 ar-Curcumene 1481 1503 1.49 22 
57 (E)- -Ionone 1489 1609 8.06 120 
58 -Selinene 1490 1537 3.15 47 
59 epi-Cubenol 1494 1387 7.16 107 
60 Valencene 1496 1480 1.07 16 
61 -Selinene 1498 1409 5.94 89 
62 -Muurolene 1502 1493 0.60 9 
63 -Muurolene 1506 1519 0.86 13 
64 -Cadinene 1514 1541 1.78 27 
65 -Cadinene 1523 1567 2.89 44 
66 cis-Calamenene 1540 1534 0.39 6 
67 Selina-3,7(11)-diene 1547 1567 1.29 20 
68 Elemol 1550 1564 0.90 14 
69 Spathulenol 1578 1634 3.55 56 
70 Caryophyllene oxide 1583 1575 0.51 8 
71 Gleenol 1587 1565 1.39 22 
72 Salvial-4(14)-en-1-one 1595 1634 2.45 39 
73 Guaiol 1601 1631 1.87 30 
74 Benzophenone 1628 1524 6.39 104 
75 -Eudesmol 1632 1652 1.23 20 
76 -Muurolol 1646 1657 0.67 11 
77 Cubenol 1647 1680 2.00 33 
78 -Eudesmol 1651 1641 0.61 10 
79 -Eudesmol 1656 1716 3.62 60 
80 Bulnesol 1672 1703 1.85 31 

 Test set     
81 -Thujene 930 951 2.26 21 
82 Camphene 954 901 5.56 53 
83 Myrcene 991 982 0.91 9 
84 p-Cymene 1025 1051 2.54 26 
85 (E)- -Ocimene 1036 1047 1.06 11 
86 (Z)-2-Hexenal 1085 1184 9.12 99 
87 Linalool 1097 1106 0.82 9 
88 trans-Pinocarveol 1139 1214 6.58 75 
89 Naphthalene 1181 1125 4.74 56 
90 Myrtenol 1195 1207 1.00 12 
91 trans-Carveol 1217 1191 2.14 26 
92 Thymol 1290 1178 8.68 112 
93 -Terpinyl acetate 1349 1501 11.27 152 
94 Geranyl acetate 1381 1330 3.69 51 
95 -Ylangene 1421 1496 5.28 75 
96 Germacrene D 1485 1524 2.63 39 
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Table 1 (continiued) 

No Name LRI Exp LRI Cal RE AbsE 
97 Bicyclogermacrene 1500 1512 0.80 12 
98 -Calacorene 1546 1574 1.81 28 
99 -Calacorene 1566 1531 2.24 35 

100 Humulene epoxide  1608 1772 10.20 164 
101 -Cadinol 1654 1682 1.69 28 

2.2. Descriptor calculation 
All structures were drawn with the HyperChem software (version 6). Optimization of 

molecular structures was carried out by semi-empirical AM1 method using the Fletcher- 
Reeves algorithm until the root mean square gradient of 0.01 was obtained. Since the 
calculated values of the electronic features of molecules will be influenced by the related 
conformation. In the current research an attempt was made to use the most stable 
conformations. Some electronic descriptors such as polarizability, dipole moment and orbital 
energies of LUMO and HOMO were calculated by using the HyperChem software. Also 
optimized structures were used to calculate 1497 descriptors by DRAGON software Version 3 
[22].  

2.3. Genetic Algorithm 
A detailed description of the genetic algorithm (GA) can be found in the literature [23, 

24]. Genetic algorithm is simulated methods based on ideas from Darwin’s theory of natural 
selection and evolution (the struggle for life). In GA a chromosome (or an individual) can be 
defined as an enciphered entity of a candidate solution, which is expressed as a set of 
variables. GA consist of the following basic steps: (1) A chromosome is represented by a 
binary bit string and an initial population of chromosomes is created in a random way; (2) A 
value for the fitness function of each chromosome is evaluated; (3) Based on the values of the 
fitness functions, the chromosomes of the next generation are produced by selection, 
crossover and mutation operations. The fitness function was proposed by Depczynski et al 
[25]. The parameter algorithm reported in Table 2. The root-mean-square errors of calibration 
(RMSEC) and prediction (RMSEP) were calculated and the fitness function was calculated by 
Eq. (1). 

                           (1) 

Where  and  are the number of compounds in the calibration and prediction set 
and n represent the number of selected variables, respectively. The parameter algorithm 
reported in Table 2. 

Table 2. Parameters of the genetic algorithm 
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Population size: 30 chromosomes 
On average, five variables per chromosome in the original population 
Regression method: MLR, PLS, KPLS 
Cross validation: leave-group-out 
Number subset: 4 
Maximum number of variables selected in the same chromosome: (MLR, 10), (PLS, 30) 
Elitism: True 
Crossover: multi Point 
Probability of crossover: 50% 
Mutation: multi Point 
Probability of mutation: 1% 
Maximum number of components: (PLS, 10) 
Number of runs: 100 

2.4. Linear models 
2.4.1. Multiple linear regression  

A major step in constructing the QSRR model is finding a set of molecular descriptors 
that represent variation in the structural property of the molecules. The modeling and 
prediction of the physicochemical properties of organic compounds is an important objective 
in many scientific fields [26, 27]. MLR is one of the most modeling methods in QSRR. MLR 
method provides an equation that links the structural features to the LRI of the compounds: 

LRI = a0 + a1d1 +· · ·+andn                                                      (2) 

Where a0 and ai are intercept and regression coefficients of the descriptors, 
respectively. di has the common definition, variable or descriptor in this case, the elements of 
this vector are equivalent numerical values of descriptors of the molecules. The greater 
absolute value of a coefficient, caused to the greater weight of variable in the model. The 
positive sign of corresponding regression coefficient between LRI and descriptors indicates 
that LRI increases with increasing the magnitude of descriptors. The negative sign of the 
corresponding regression coefficient between LRI and descriptors indicates that LRI increase 
with decreasing the magnitude of descriptors. 

2.4.2. Partial least squares 

    PLS is a linear multivariate method for relating the process variables  with responses . 
PLS can analyze data with strongly collinear, noisy, and numerous variables in both and 
[28]. PLS reduces the dimension of the predictor variables by extracting factors or latent 
variables that are correlated with while capturing a large amount of the variations in . 
This means that PLS maximizes the covariance between matrices and . In PLS, the 
scaled matrices  and are decomposed into score vectors (  and ), loading vectors (
and ), and residual error matrices (  and ): 

 

                                                          (3) 

Where  is the number of latent variables. In an inner relation, the score vector  is 
linearly regressed against the score vector u.  

Ui = biti+hi                                                                                                       (4) 

Where b is regression coefficient that is determined by minimizing the residual . It is 
crucial to determine the optimal number of latent variables and cross validation is a practical 
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and reliable way to test the predictive significance of each PLS component. There are several 
algorithms to calculate the PLS model parameters. In this work, the NIPALS algorithm was 
used with the exchange of scores [29]. 

2.5. Nonlinear model 
2.5.1. Kernel partial least squares 

The KPLS method is based on the mapping of the original input data into a high 
dimensional feature space  where a linear PLS model is created. By nonlinear mapping

, a KPLS algorithm can be derived from a sequence of NIPALS steps 
and has the following formulation [30]: 

1. Initialize score vector  as equal to any column of Y. 

2. Calculate scores and normalize u to ||u|| = 1, where  is a matrix of 
regressors. 
3. Regress columns of Y on u: c = YTu, where c is a weight vector. 

4. Calculate a new score vector w for Y: w = Yc and then normalize w to ||w||=1. 
5. Repeat steps 2–4 until convergence of w. 

6. Deflate  and Y matrices: 

                                                (5) 

Y = Y − uuTY                                                                   (6) 

7. Go to step 1 to calculate the next latent variable. 
Without explicitly mapping into the high-dimensional feature space, a kernel function 

can be used to compute the dot products as follows: 

                                                      (7) 

represents the (n×n) kernel Gram matrix K of the cross dot products between all  
mapped input data points . The deflation of the matrix after 
extraction of the u components is given by: 

K = (I − uuT)K(I − uuT)                                                       (8) 

Where I is an m-dimensional identity matrix. Taking into account the normalized scores 

u of the prediction of KPLS model on training data  is defined as: 

                                               (9)  

For predictions on new observation data , the regression can be written as: 

                                                     (10) 

Where Kt is the test matrix whose elements are Kij =K(xi, xj) where xi and xj present the 
test and training data points, respectively. 

2.6. Software and programs 
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A Pentium IV personal computer (CPU at 3.06 GHz) with windows XP operational 
system was used. Geometry Optimization was performed by HyperChem (Version 7.0 
Hypercube, Inc.), Dragon software was used to calculate of descriptors. MLR analysis was 
performed by the SPSS Software (version 13, SPSS, Inc.) by using enter method for model 
building. MINITAB software (version 14, MINITAB) was used for the simple PLS analysis. 
Cross validation, GA-MLR, GA-PLS, GA-KPLS and other calculation were performed in the 
MATLAB (Version 7, Mathworks, Inc.) environment. 

3. Results and discussion 
3.1. Linear models  

3.1.1. GA-MLR analysis 
To reduce the original pool of descriptors to an appropriate size, the objective 

descriptor reduction was performed using various criteria. Reducing the pool of descriptors 
eliminates those descriptors which contribute either no information or whose information 
content is redundant with other descriptors present in the pool. From the variable pairs with R 
> 0.90, only one of them was used in the modeling, while the variables over 90% and equal to 
zero or identical were eliminated. With the use of these criteria, 1137 out of 1497 original 
descriptors were eliminated and remaining descriptors were employed to generate the models 
with the GA-MLR program. In order to minimize the information overlap in descriptors and 
to reduce the number of descriptors required in regression equation, the concept of non-
redundant descriptors was used in our study. The best equation is selected on the basis of the 
highest multiple correlation coefficient leave-group-out cross validation (LGO-CV) (Q2), the 
least RMSECV, absolute error (AbsE) and relative error (RE) of prediction and simplicity of 
the model. These parameters are probably the most popular measure of how well a regression 
model fits the data. Among the models proposed by GA-MLR, one model had the highest 
statistical quality and was repeated more than the others. This model had five molecular 
descriptors including constitutional descriptors (rotatable bond fraction) (RBF), topological 
descriptor (information content index (neighborhood symmetry of 1-order)) (IC1), RDF 
descriptors (Radial Distribution Function - 4.5 / weighted by atomic Sanderson 
electronegativities) (RDF045e) and electronic descriptor (dipole moment ( ) and lowest 
unoccupied molecular orbital (LUMO)). The best QSRR model obtained is given below 
together with the statistical parameters of the regression in Eq. (11). 

LRI = 141.068 ( 52.871) -238.311 ( 109.969) RBF + 150.028 ( 54.587) IC1 -2.901 (
0.487) RDF045e + 41.373( 4.699)  -27.025 ( 12.430) LUMO                 (11)  

The greater absolute value of a coefficient, caused to the greater weight of variable in 
the model. The RBF coefficient is bigger in the equation, thus it is very important descriptor 
compared to the other descriptors in the model. The RBF, RDF045e and LUMO displays a 
negative sign which indicates that when these descriptors increase the LRI decreases. The IC1 
and  displays a positive sign which indicates that the LRI is directly related to these 
descriptors. The statistical parameters of this model, constructed by the selected descriptors, 
are depicted in Table .3.  
3.1.2. GA-PLS analysis 

The colinearity problem of the MLR method has been overcome through the 
development of the partial least-squares projections to latent structures (PLS) method. For this 
reason, after eliminating descriptors that had identical or zero values for greater than 90% of 
the compounds, 1010 descriptor were remained. These descriptors were employed to generate 
the models with the GA-PLS and GA-KPLS program. The best PLS model contained 6 
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selected descriptors in 2 latent variables space. These descriptors were obtained constitutional 
descriptors (number of multiple bonds) (nBM), topological descriptors (3D-Balaban index) 
(J3D), RDF descriptors (Radial Distribution Function - 12.5 / weighted by atomic Sanderson 
electronegativities) (RDF125e), atom-centred fragments (CH2R2 (C-002)) and electronic 
descriptors (polarizibiloity, dipole moment and high occupied molecular orbital (HOMO)). For 
this in general, the number of components (latent variables) is less than the number of 
independent variables in PLS analysis. The obtained statistic parameters of the GA-PLS 
model were shown in Table 3. The data confirm that higher correlation coefficient and lower 
prediction error have been obtained by PLS in relative to MLR and these reveal that PLS 
method produces more accurate results than that of MLR. The PLS model uses higher number 
of descriptors that allow the model to extract better structural information from descriptors to 
result in a lower prediction error.  
3.2. Nonlinear model 

3.2.1. GA-KPLS analysis 
With the aim of improving the predictive performance of nonlinear QSRR model, GA-

KPLS modeling was performed. The leave-group-out cross validation has been performed. 
The n selected descriptors in each chromosome were evaluated by fitness function of PLS and 
KPLS based on the Eq. (1). In this paper a radial basis kernel function, k(x,y)=  exp(||x-y||2 /c), 
was selected as the kernel function with where r is a constant that can be determined 
by considering the process to be predicted (here r set to be 1), m is the dimension of the input 
space and  is the variance of the data [31]. It means that the value of c depends on the 
system under the study. The 6 descriptors in 3 latent variables space chosen by GA-KPLS 
feature selection methods were contained constitutional descriptors (mean atomic van der 
Waals volume (scaled on Carbon atom)) (Mv) and (number of double bonds)(nDB), 
GETAWAY descriptors (R autocorrelation of lag 3 / weighted by atomic masses)( R3m), 
atom-centred fragments (H attached to C1(sp3)/C0(sp2))( H-047) and electronic descriptors 
(LUMO and polarizibility). The predicted values of LRI are plotted against the experimental 
values for training and test set in Fig. 1. Obviously, there is a close agreement between the 
experimental and predicted LRI and the data represent a very low scattering around a straight 
line with respective slope and intercept close to one and zero.  

 
Fig. 1. Predicted vs. experimental LRI by GA-KPLS 

The values of experimental, calculated and percent relative error are shown in Table 1. 
The statistical parameters obtained by this model for the training and test sets are summarized 
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in Table 3. For the constructed model, five general statistical parameters were selected to 
evaluate the prediction ability of the model for the LRI. Table 3 shows the statistical 
parameters for the compounds obtained by applying models to training and test sets. Each of 
the statistical parameters mentioned above were used for assessing the statistical significance 
of the QSRR model. The data presented in Table .3 indicate that the GA-PLS and GA-MLR 
linear model have good statistical quality with low prediction error, while the corresponding 
errors obtained by the GA-KPLS model are lower.  

Table 3. The statistical parameters of different constructed QSRR models. 
Model 
 
 

                             Training set                         Test set 

R2 Q2 RE RMSE AbsE N R2 Q2 RE RMSE AbsE N 

GA-PLS 0.935 0.936 3.92 52.26 38.54 80 0.858 0.860 8.02 86.74 68.19 21 

GA-KPLS 0.942 0.942 3.47 49.07 37.84 80 0.870 0.871 7.63 82.51 63.70 21 

GA-KPLS 0.967 0.968 2.43 41.61 31.27 80 0.919 0.919 4.04 68.59 52.04 21 

The Q2, which is a measure of the model fit to the cross validation set, can be 
calculated as: 

                                                             (12) 

Where , and  were respectively the experimental, predicted, and mean LRI 
values of the samples. The accuracy of cross validation results is extensively accepted in the 
literature considering the Q2 value. In this sense, a high value of the statistical characteristic 
(Q2 > 0.5) is considered as proof of the high predictive ability of the model [32]. However, 
several authors suggest that a high value of Q2 appears to be a necessary but not sufficient 
condition for a model to have a high predictive power and consider that the predictive ability 
of a model can only be estimated using a sufficiently large collection of compounds that was 
not used for building the model [33]. 

We believe that applying only LGO-CV is not sufficient to evaluate the predictive 
ability of a model. Thus we employed a two-step validation protocol which contains internal 
(LGO-CV) and external (test set) validation methods. The data set was randomly divided into 
training (calibration and prediction sets) and test sets after sorting based on the LRI values. 
The training set consisted of 80 molecules and the test set, consisted of 21 molecules. The 
training set was used for model development, while the test set in which its molecules have no 
role in model building was used for evaluating the predictive ability of the models for external 
set. 

The statistical parameters obtained by LGO-CV for GA-KPLS and the linear QSRR 
models are compared in Table .3. Inspection of the results of the table reveals a higher R2 and 
Q2 values and lower RMSE and RE for GA-KPLS model for the training and test sets 
compared with their counterparts for other models. This clearly shows the strength of GA-
KPLS as a nonlinear feature selection method. Result indicates that the LRI of essential oils 
possesses some nonlinear characteristics.  

3.2.2. Description of models descriptors 
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In the chromatographic retention of compounds in the nonpolar or low polarity 
stationary phases two important types of interactions contribute to the chromatographic 
retention of the compounds: the induction and dispersion forces. The dispersion forces are 
related to steric factors, molecular size and branching, while the induced forces are related to 
the dipolar moment, which should stimulate dipole-induced dipole interactions. For these 
reasons, constitutional descriptors, functional group and electronic descriptors are very 
important. 

Electronic descriptors were defined in terms of atomic charges and used to describe 
electronic aspects both of the whole molecule and of particular regions, such atoms, bonds, 
and molecular fragments. This descriptor calculated by computational chemistry and therefore 
can be consider among quantum chemical descriptor.  

As expected, the model included HOMO and LUMO energies to quantify electronic 
effects of drugs. HOMO energy is a useful descriptor that presents information on the 
distribution of π  electron and explains ππ − charge transfer interactions of unsaturated 
compounds. HOMO energy plays a very important role in nucleophilic behaviour and it 
represents molecular reactivity as a nucleophile. Good nucleophiles are those in which 
electrons reside in high lying orbitals. Electron affinity was also shown to greatly influence 
the chemical behaviour of compounds, as demonstrated by its inclusion in the QSPR/QSRR. 
The eigenvalues of LUMO and HOMO and their energy gap reflect the chemical activity of 
the molecule. LUMO as an electron acceptor represents the ability to obtain an electron, while 
HOMO as an electron donor represents the ability to donate an electron. The lowest 
unoccupied molecular orbital (LUMO) energy can be interpreted as a measure of charge 
transfer interactions and/or of hydrogen bonding effects [34, 35]. 

Constitutional descriptors are most simple and commonly used descriptors, reflecting 
the molecular composition of a compound without any information about its molecular 
geometry. The most common Constitutional descriptors are number of atoms, number of 
bound, absolute and relative numbers of specific atom type, absolute and relative numbers of 
single, double, triple, and aromatic bound, number of ring, number of ring divided by the 
number of atoms or bonds, number of benzene ring, number of benzene ring divided by the 
number of atom, molecular weight and average molecular weight. 

The number of H atoms attached to C1 (sp3)/C0 (sp2) (H-047) is an atom-centered 
descriptor calculated by knowing the molecular composition and atom connectivities. This 
descriptor encodes information about the hybridization and oxidation state of the carbon 
atoms. 

Topological descriptors are based on a graph representation of the molecule. They are 
numerical quantifiers of molecular topology obtained by the application of algebraic operators 
to matrices representing molecular graphs and whose values are independent of vertex 
numbering or labeling. They can be sensitive to one or more structural features of the 
molecule such as size, shape, symmetry, branching and cyclicity and can also encode 
chemical information concerning atom type and bond multiplicity. Balaban index is a variant 
of connectivity index, represents extended connectivity and is a good descriptor for the shape 
of the molecules and modifying biological process. Nevertheless, some of chemists have used 
this index successfully in developing QSPR/QSRR models.  

The radial distribution function (RDF) descriptors are based on the distances 
distribution in the geometrical representation of a molecule and constitute a radial distribution 
function code. The RDF descriptors can be restricted to specific atom types or distance ranges 
to represent specific information in a certain three-dimensional structure space, e.g. to 
describe steric hindrance or structure/activity properties of a molecule.  
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The GETAWAY (geometry, topology, and atom-weights assembly) descriptors try to 
match 3Dmolecular geometry provided by the molecular influence matrix and atom 
relatedness by molecular topology, with chemical information by using different atomic 
weights (atomic mass, polarizability, van der Waals volume, and electronegativity. 
GETAWAY descriptors are quickly computed from the atomic positions of the molecule 
atoms (hydrogens included) [36]. 
4. Conclusion 

In this study, an accurate QSRR model for estimating the linear retention indices (LRI) 
of essential oils of three different Salvia species which obtained by GC–EIMS was developed 
by employing the two linear models (GA-MLR and GA-PLS) and one nonlinear model (GA-
KPLS). The most important molecular descriptors selected represent the constitutional 
descriptors, functional group and electronic descriptors that are known to be important in the 
retention mechanism of essential oils. Three models have good predictive capacity and 
excellent statistical parameters. A comparison between these models revealed the superiority 
of the GA-KPLS to other models. It is easy to notice that there was a good prospect for the 
GA-KPLS application in the QSRR modeling. This indicates that LRI of essential oils 
possesses some nonlinear characteristics. It can also be used successfully to estimate the LRI 
for new compounds or for other compounds whose experimental values are unknown.  
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