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Abstract: Using the Reduced Differential Transform Method (RDTM), it is possible to find the 

exact solutions or better approximate solutions of wide classes of problems in mathematical 

physics. The coupled KdV equations introduced by Hirota-Satsuma and Modified Camassa-

Holm equation introduced by Wazwaz have rich applications in mathematical physics. In this 

paper, this method is used for solving these nonlinear equations with given initial conditions 

containing arbitrary constants. The numerical solutions obtained by RDTM are compared 

with the exact known solutions by fixing the arbitrary constants. The obtained results show 

that the solutions obtained by RDTM are in good agreement with the exact solutions. 

Keywords:Reduced Differential Transform Method; Modified Camassa-Holm  equation; 

Coupled Korteweg–de Vries (KdV) equations. 

INTRODUCTION 
There are many wave equations, which are quite useful and applicable in engineering and physics 

such as the well-known linear and nonlinear wave equations, the wave equation in an unbounded do-
main, kdv equation, nonlinear coupled Korteweg–de Vries (KdV) equations, Modified Camassa-Holm 
(MCH) equation and so on. Nonlinear wave phenomena plays a major role in sciences such as fluid me-
chanics, plasma physics, solid state physics, optical fibers, chemical kinetics and geochemistry. These 
problems include a vibrating string, vibrating membrane, shallow water waves, shock waves, chemical 
exchange processes in chromatography, sediment transport in rivers and waves in plasmas, and both 
electric and magnetic fields in the absence of charge and dielectric [1].  

Various approximate and analytical methods have recently been developed to solve linear and nonli-
near differential equations ([2-9]). One of the most important partial differential equations occurring in 
applied mathematics is Korteweg–de Vries (KdV) equation. Firstly Wadati [10] developed solutions of 
KdV and the mKdV equations ([11-12]). Here our interest is to obtain the solution of again an important 
nonlinear evolution equations in mathematical physics known as KdV coupled equations. The coupled 
KdV equations  introduced by Hirota-Satsuma [13] describe interactions of two long waves with different 
dispersion relations.  

The Camassa-Holm (CH) equation is a shallow water equation and was originally derived as an ap-
proximation to the incompressible Euler equation. One of the main features of the CH equation is that 
they admit “peakon” solutions. The name “peakon”, which means travelling wave with slope discontinui-
ties, is used to distinguish them from general travelling wave solutions since they have a corner at the 
peak of height c, where c is the wave speed. Since the CH equation has rich applications. Wazwaz [14] 
suggested a modified form of the MCH. 

In this paper we will apply the Reduced differential transform method (RDTM) to solve the MCH equa-
tion and nonlinear coupled KdV equations. The main advantage of the method is the fact that it provides 
its user with an analytical approximation, in many cases an exact solution, in a rapidly convergent series 
with elegantly computed terms. 

METHODOLOGY 
The basic definitions in the reduced differential transform method [15] are as follows: 
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Definition 2.1: Let function 푢(푥, 푡) be analytic and k-times continuously differentiable with respect to 
time t and space x in the domain of interest, and let  

푈 (푥) =
!
( ( , )) ’          (1) 

where the function 푈 (푥) is the transformed function of the original function 푢(푥 , 푡). The differential 
inverse transform of 푈 (푥) is defined as   

푢(푥, 푡) = ∑ 푈 (푥)푡           (2) 
 Then, combining equations (1) and (2), we write 

푢(푥, 푡) = ∑
!
( ( , )) 푡 .                                              (3) 

From the above definitions, it can be found that the concept of the RDT method is derived from the 
Taylor’s series expansion. 
Again, Definition 2.1 implies that the initial approximation 푈 (푥) is given by the initial condition, that is 

푈 (푥) = 푢(푥, 0).                                                                          (4) 
Taking the Reduced Differential Transformation of the equation to be solved, we obtain an iteration 

formula for 푈 (푥). Then the differential inverse transformation of the set of values [푈 (푥)]  gives ap-
proximation solution as 

푢 (푥, 푡) = ∑
!
( ( , )) 푡 .                                              (5) 

Therefore, the differential inverse transform of 푈 (푥) is given by 푢(푥, 푡) = lim → 푢 (푥, 푡). 

 
Table 1: Reduced Differential Transformation 

Function RDT 

푢(푥, 푡) 
푈 (푥) =

1
푘!

(
휕 푢(푥, 푡)
휕푡

)  

푤(푥, 푡) = 푢(푥, 푡) ± 푣(푥, 푡) 푊 (푥) = 푈 (푥) ± 푉 (푥) 

푤(푥, 푡) = 훼푢(푥, 푡) 푊 (푥) = 훼푈 (푥) (훼 is constant) 

푤(푥, 푡) =
휕
휕푥 푢(푥, 푡) 푊 (푥) =

휕
휕푥 (푈 (푥)) 

 

푤(푥, 푡) = 푢(푥, 푡)푣(푥, 푡) 푊 (푥) = 푉 (푥)푈 (푥) = 푈 (푥)푉 (푥) 

푤(푥, 푡) =
휕
휕푡 푢(푥, 푡) 푊 (푥) = (푘 + 1)푈 (푥) 

 

APPLICATIONS   
Two test problems are taken to show the efficiency and accuracy of the method. with the initial condi-

tions using the RDTM. Throughout we have used sech (푚푥 + 훾푡)  for (sech (푚푥 + 훾푡))  and tanh (푚푥 +
훾푡)  for (tanh(푚푥 + 훾푡)) . 

1. KdV coupled equations 

Table 2: Comparison of RDTM solution with the exact solution of 푢(푥, 푡) for 훼 = 1,훽 = 1, 휆 = 1. 

t x RDTM Exact Absolute error 



  Mohd. Junaid Siddiqui et.al 
 

176 
 

 
In this subsection, we will solve using the RDTM the following (1+1)-dimensional nonlinear KdV 

coupled [12] equations in the form: 
푢 − 훼푢 − 6훼푢푢 + 2훽푣푣 = 0,                                           (6) 

푣 + 푢 + 3푢푣                                                                          (7) 

with initial conditions 
푢(푥, 0) = 휆 (sech(λ x 2⁄ ))     (8) 

and 

푣(푥, 0) =  (sech(λ x 2⁄ )) + 휆 (훼 + 1).  (9) 

Here 푢 = 푢(푥, 푡), 푣 = 푣(푥, 푡) are the solutions of (6) and (7), and 훼 and 훽are the nonzero positive con-
stants.  

The exact solution for the above problem is given by 

푢(푥, 푡) = 휆 (sech (λ(x − 휆 푡) 2⁄ ))      (10) 

and 

푣(푥, 푡) = (sech (λ (x − 휆 푡) 2⁄ )) + 휆 (훼 + 1).    (11) 

The coupled KdV equations (6) and (7) are introduced by Hirota-Satsuma [12] and describe interac-
tions of two long waves with different dispersion relations. In [12], the authors showed that for all values 
of 훼and 훽, the system (6) and (7) possesses three conservation laws and a solitary wave solution. In [15], 
the authors have found the exact and numerical traveling wave solutions of this system using the decom-
position method. Let us now solve the system (6) and (7) by the RDTM method. 
Taking the Reduced Differential transformation of both sides of equations (6) and (7), we obtain the itera-
tive scheme as follows: 

(푘 + 1)푈 (푥) = 훼 푈 (푥) + 푁 푈 (푥) +푀 푉 (푥) (12) and 

(푘 + 1)푉 (푥) = − 푉 (푥) + 퐿 푈 (푥),푉 (푥)  (13) 

where 푁 푈 (푥)  is the reduced differential transformation of 6훼푢푢 ,푀 푉 (푥)  is the reduced diffe-
rential transformation of−2훽푣푣  and 퐿 푈 (푥),푉 (푥)  is the reduced differential transformation of−3푢푣 . 

Using the initial conditions (8) and (9), we obtain 
푈 (푥) = λ (sech(λ x 2⁄ )) , 

푉 (푥) = (λ 2⁄ ) 6훼 훽⁄ (sech(λ x 2⁄ )) + 휆 (훼 + 1) 6훼훽⁄ , 

푈 (푥) =
−6훼휆 (sech(λ x 2⁄ ))  tanh(λ x 2⁄ ) +

 
0.1 

 

1 
0 
-1 

0.822084 
0.997500 
0.749398 

0.822001 
0.997504 
0.749480 

0.000083 
0.000004 
0.000082 

 

0.2 

1 

0 

-1 

0.856308 

0.990000 

0.710935 

0.855639 

0.990066 

0.711578 

0.000669 

0.000066 

0.000643 

 

0.3 

 

1 

0 

-1 

0.889118 

0.977500 

0.671060 

0.886851 

0.977833 

0.673193 

0.002267 

0.000333 

0.002133 
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√6 훽휆 (sech(λ x 2⁄ )) ( )

√
+ 휆 (sech(λ x 2⁄ )) tanh(λ x 2⁄ ) +

훼휆 (2휆 (sech(λ x 2⁄ ))  tanh(λ x 2⁄ ) − 휆 (sech(λ x 2⁄ )) (tanh(λ x 2⁄ )) ). 

 

푉 (푥) = 3
3
2

훼
훽 휆

(sech(λ x 2⁄ ))  tanh(λ x 2⁄ ) −
3
2

훼
훽 휆 (2휆 (sech(λ x 2⁄ ))  tanh(λ x 2⁄ )

− 휆 (sech(λ x 2⁄ )) (tanh(λ x 2⁄ )) )                                                                     

and so on. 

Then, the differential inverse transformation of the set of values [푈 (푥)]  gives the second order 
approximation solution as 

푢 (푥, 푡) = 푈 (푥)푡  

= 푈 (푥) +푈 (푥)푡 +푈 (푥)푡 , 

  and the differential inverse transformation of the set of values [푉 (푥)]  gives the second order ap-
proximation solution as 

푣 (푥, 푡) = 푉 (푥)푡  

= 푉 (푥) + 푉 (푥)푡 + 푉 (푥)푡 . 
The comparison of the present approximate solution with the exact solution (10) of the coupled KdV 

equations is made in the following tables: 
Table 3: Comparison of the approximate solution with the exact solution of 푣(푥, 푡) for 훼 = 1,훽 = 1, 휆 = 1. 

t x RDTM Exact Absolute 
error 

 
0.1 

 

1 
0 

-1 

1.82334 
2.03818 

1.73432 

1.82324 
2.03818 

1.73442 

0.0001 
0 

0.0001 

 
0.2 

1 
0 

-1 

1.86524 
2.02899 

1.68721 

1.86444 
2.02908 

1.68800 

0.0008 
0.00009 

0.00079 

 
0.3 

1 
0 

-1 

1.90544 
2.01368 

1.63837 

1.90266 
2.01409 

1.64099 

0.00278 
0.00041 

0.00262 
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Fig1: The numerical results for 푢 (푥, 푡) (given in (a)) is comparison with the exact analytical solutions u(x,t) 

(given in (b)) 
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Fig 2: The numerical results for 풗ퟐ(풙, 풕) (given in (c)) in comparison with the exact analytical solutions u(x,t) 

(given in (d)). 

2. Modified Camassa-Holm equation (MCH) equation 
We consider the modified Camassa-Holm equation (MCH) equation 

풖풕 − 풖풙풙풕 + ퟑ풖ퟐ풖풙 = ퟐ풖풙풖풙풙 + 풖풖풙풙풙,풙흐푹, 풕 > 0,               (14) 
with initial condition 

풖(풙,ퟎ) = 풌 −휶( 퐬퐞퐜퐡 (풎풙))ퟐ.                                                (15) 
Here 풖 = 풖(풙, 풕) is the solution of (14). 
We know that the exact solution for above problem is 

풖(풙, 풕) = 풌 −휶( 퐬퐞퐜퐡 (풎풙 + 휸풕))ퟐ .                                         (16) 

where 휶 = ퟏ + ퟐ풌 +√ퟏ −ퟐ풌 −ퟐ풌ퟐ,    풎 = √ퟐ휶
ퟒ

and   휸 = √ퟐ휶
ퟒ

(ퟑ풌 −휶). 

Using RDTM, the transformed form of equation (14) is 

(풌+ ퟏ)푼풌 ퟏ(풙) =  푵풌 푼풌(풙) + 흏ퟑ

흏풙ퟐ흏풕
풖풌(풙, 풕)                      (17) 

where 푵풌 푼풌(풙)  is the Reduced Differential Transformation of ퟐ풖풙풖풙풙 + 풖풖풙풙풙 − ퟑ풖ퟐ풖풙. 

Using the initial condition (15), we obtain 

푼ퟎ(풙) = 풌 −휶( 퐬퐞퐜퐡 (풎풙))ퟐ, 

푼ퟏ(풙) = −ퟔ풎휶(퐬퐞퐜퐡(풎풙))ퟐ(풌 − 휶(퐬퐞퐜퐡(풎풙))ퟐ)ퟐ(퐭퐚퐧퐡(풎풙)) 
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−ퟒ풎휶ퟐ(퐬퐞퐜퐡(풎풙))ퟐ(퐭퐚퐧퐡 (풎풙))(−ퟐ풎ퟐ( 퐬퐞퐜퐡 (풎풙))ퟒ + ퟒ풎ퟐ( 퐬퐞퐜퐡 (풎풙))ퟐ(퐭퐚퐧퐡 (풎풙))ퟐ) − 

휶(풌 − 휶 (퐬퐞퐜퐡 (풎풙))ퟐ)(ퟏퟔ풎ퟑ(퐬퐞퐜퐡(풎풙))ퟒ(퐭퐚퐧퐡(풎풙))− ퟖ풎ퟑ( 퐬퐞퐜퐡 (풎풙))ퟐ(퐭퐚퐧퐡 (풎풙))ퟑ), 
and so on. 

Then, the differential inverse transformation of the set of values [푼풌(풙)]풌 ퟎ
ퟐ  gives the second order 

approximation solution as 

풖ퟐ(풙, 풕) = 푼풌(풙)풕풌
ퟐ

풌 ퟎ

 

= 푼ퟎ(풙) +푼ퟏ(풙)풕 + 푼ퟐ(풙)풕ퟐ. 
The comparison of the present approximate solutions with the exact solutions of the MCH equation is 

made in the following table: 

Table 4: Comparison of the approximate solution with the exact solution of MCH equation for 푘 = 0. 

t x RDTM Exact Absolute 
error 

 

0.0001 
 

0.5 

0.0 
-0.5 

-1.57241 

-1.99999 
-1.5734 

-1.57304 

-2.00000 
-1.57275 

0.00063 

0.00001 
0.00065 

 

0.0003 

0.5 

0.0 
-0.5 

-1.57149 

-1.99987 
-1.57444 

-1.57333 

-2.00000 
-1.57246 

0.00184 

0.00013 
0.00198 

 

0.0005 

0.5 

0.0 
-0.5 

-1.57062 

-1.99964 
-1.57554 

-1.57362 

-2.00000 
-1.57217 

0.00300 

0.00036 
0.00337 

 

CONCLUSION  
The main aim of this article is to construct approximate analytical solutions of the nonlinear coupled 

Korteweg–de Vries equations and Modified Camassa-Holm equation. We have achieved this goal by apply-
ing the Reduced Differential transform method. Its rapid convergence shows that the method is reliable 
and introduces a significant improvement in solving the nonlinear coupled Korteweg–de Vries equations 
and Modified Camassa-Holm equation over existing numerical methods. As the method is usually tedious 
to use by hand, we have used the software package “MATHEMATICA” to calculate the terms of the series 
obtained from the RDTM. The numerical results are compared with the exact solutions in Tables 2, 3 and 
4. The approximate solutions are also compared with the exact solutions in Figures 1 and 2.  
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