
Eurasian Journal of Analytical Chemistry
ISSN: 1306-3057 OPEN ACCESS 2018 13 (3): 689-697

Received: 02 Jan 2018 ▪ Revised: 07 March 2018 ▪ Accepted: 30 March 2018

Abstract: With increasing reliance on internet services and applications enabling the

management of personal information from anywhere, there has been increase in

application and data complexity which led to the multi-tiered design of systems where web

servers run the front end logic of the application and data stored/fetched from database or

file servers. Since there has been huge surge in data theft, these applications over the years

has become more vulnerable to intrusions. To identify the intrusions in a more accurate

manner we implemented Double Guard using Apache web server and My SQL with

lightweight virtualization. With the system in place over a period of few weeks, we were

able to expose a wide range of attacks with 100% accuracy in both static and dynamic web

services.

Keywords: Multi-tiered, Virtualization, SQL Injection Attacks, HTTP.

INTRODUCTION
Today’s users are not aware of how much web applications and web services they use in day to day

activity for past few years. Activity such as banking, travel booking, entertainment ticket booking and
social networking are done through web on daily basis. Such services typically employ a web server front
end that runs the application user interface logic, as well as a back-end server that consists of a database
or file server. Due to their ubiquitous use for personal and/or corporate data, web services have always
been the target of attacks. These attacks have become more diverse as attention has shifted from
attacking the front end to exploiting vulnerabilities of the web applications in order to corrupt the back-
end database system (e.g., SQL injection attacks). There is very little work being performed on multi-
tiered systems that generate models of network behaviour for both web and database network
interactions. In such multi-tiered architectures, the back-end database server is often protected behind a
firewall while the web servers are remotely accessible over the Internet. Unfortunately, though they are
protected from direct remote attacks, the back-end systems are susceptible to attacks that use web
requests as a means to exploit the back end. To protect multi-tiered web services, Intrusion detection
systems have been widely used to detect known attacks by matching misused traffic patterns or
signatures. A class of IDS that leverages machine learning can also detect unknown attacks by identifying
abnormal network traffic that deviates from the so-called “normal” behaviour previously profiled during
the IDS training phase. Individually, the web IDS and the database IDS can detect abnormal network
traffic sent to either of them. However, we found that these IDSs cannot detect cases wherein normal
traffic is used to attack the web server and the database server. For example, if an attacker with non-
admin privileges can log in to a web server using normal-user access credentials, he/she can find a way to
issue a privileged database query by exploiting vulnerabilities in the web server. Neither the web IDS nor
the database IDS would detect this type of attack since the web IDS would merely see typical user login
traffic and the database IDS would see only the normal traffic of a privileged user. This type of attack can
be readily detected if the database IDS can identify that a privileged request from the web server is not
associated with user-privileged access. Unfortunately, within the current multithreaded web server
architecture, it is not feasible to detect or profile such causal mapping between web server traffic and DB
server traffic since traffic cannot be clearly attributed to user sessions.

Here we present a system used to detect attacks in multi-tiered web services. Our approach can create
normality models of isolated user sessions that include both the web front-end (HTTP) and back-end (File
or SQL) network transactions.

K. Anita Davamani, Assistant Professor, Department of Computer Science and Engineering, BIST, BIHER, Bharath
Institute of Higher Education & Research, Selaiyur, Chennai. E-mail: anitadavamani@gmail.com

S. Amudha, Assistant Professor, Department of Computer Science and Engineering, BIST, BIHER, Bharath Institute of
Higher Education & Research, Selaiyur, Chennai. E-mail: amudha17s@gmail.com

K. Anita Davamani, S. Amudha

Doubleguard: Intrution Detection Using
Virtualization

mailto:amudha17s@gmail.com

690 K. Anita Davamani et.al

To achieve this, we employ a lightweight virtualization technique to assign each user’s web session to
a dedicated container, an isolated virtual computing environment. We use the container ID to accurately
associate the web request with the subsequent DB queries. Our system can build a causal mapping profile
by taking both the web server and DB traffic into account.

We have implemented our system container architecture using Open VZ, and performance testing
shows that it has reasonable performance overhead and is practical for most web applications. When the
request rate is moderate (e.g., under 110 requests per second), there is almost no overhead in
comparison to an unprotected vanilla system. Even in a worst case scenario when the server was already
overloaded, we observed only 26 percent performance overhead. The container-based web architecture
not only fosters the profiling of causal mapping, but it also provides an isolation that prevents future
session-hijacking attacks. Within a lightweight virtualization environment, we ran many copies of the web
server instances in different containers so that each one was isolated from the rest. As ephemeral
containers can be easily instantiated and destroyed, we assigned each client session a dedicated container
so that, even when an attacker may be able to compromise a single session, the damage is confined to the
compromised session; other user sessions remain unaffected by it.

Using our prototype, we show that, for websites that do not permit content modification from users,
there is a direct causal relationship between the requests received by the front-end web server and those
generated for the database back end. In fact, we show that this causality-mapping model can be generated
accurately and without prior knowledge of web application functionality. Our experimental evaluation,
using real-world network traffic obtained from the web and database requests of a large centre, showed
that we were able to extract 100 percent of functionality mapping by using as few as 35 sessions in the
training phase. Of course, we also showed that this depends on the size and functionality of the web
service or application. However, it does not depend on content changes if those changes can be performed
through a controlled environment and retrofitted into the training model. We refer to such sites as
“static” because, though they do change over time, they do so in a controlled fashion that allows the
changes to propagate to the sites’ normality models.

RELATED WORKS
Intrusion alerts correlation [14] provides a collection of components that transform intrusion

detection sensor alerts into succinct intrusion reports in order to reduce the number of replicated alerts,
false positives, and non relevant positives. It also fuses the alerts from different levels describing a single
attack, with the goal of producing a succinct overview of security-related activity on the network. It
focuses primarily on abstracting the low-level sensor alerts and providing compound, logical, high-level
alert events to the users. Double Guard differs from this type of approach that correlates alerts from
independent IDSs. Rather, Double- Guard operates on multiple feeds of network traffic using a single IDS
that looks across sessions to produce an alert without correlating or summarizing the alerts produced by
other independent IDSs.

An IDS such as in [25] also uses temporal information to detect intrusions. Double Guard, however,
does not correlate events on a time basis, which runs the risk of mistakenly considering independent but
concurrent events as correlated events. Double Guard does not have such a limitation as it uses the
container ID for each session to causally map the related events, whether they be concurrent or not.

In addition to this static website case, there are web services that permit persistent back-end data
modifications.

These services, which we call dynamic, allow HTTP requests to include parameters that are variable
and depend on user input. Therefore, our ability to model the causal relationship between the front end
and back end is not always deterministic and depends primarily upon the application logic. For instance,
we observed that the backend queries can vary based on the value of the parameters passed in the HTTP
requests and the previous application state. Sometimes, the same application’s primitive functionality
(i.e., accessing a table) can be triggered by many different web pages. Therefore, the resulting mapping
between web and database requests can range from one to many, depending on the value of the
parameters passed in the web request.

To address this challenge while building a mapping model for dynamic web pages, we first generated
an individual training model for the basic operations provided by the web services. We demonstrate that
this approach works well in practice by using traffic from a live blog where we progressively model nine
operations. Our results show that we were able to identify all attacks, covering more than 99 percent of
the normal traffic as the training model is refined.

691 Eurasian Journal of Analytical Chemistry

SYSTEM ARCHITECTURE
We initially set up our threat model to include our assumptions and the types of attacks we are aiming

to protect against. We assume that both the web and the database servers are vulnerable. In our design,
we make use of lightweight process containers, referred to as “containers,” as ephemeral, disposable
servers for client sessions. It is possible to initialize thousands of containers on a single physical machine,
and these virtualized containers can be discarded, reverted, or quickly reinitialized to serve new sessions.
A single physical web server runs many containers, each one an exact copy of the original web server. Our
approach dynamically generates new containers and recycles used ones. As a result, a single physical
server can run continuously and serve all web requests.

In Double Guard, the new container-based web server architecture enables us to separate the different
information flows by each session. This provides a means of tracking the information flow from the web
server to the database server for each session. Our approach also does not require us to analyze the
source code or know the application logic. For the static webpage, our Double Guard approach does not
require application logic for building a model. However, as we will discuss, although we do not require
the full application logic for dynamic web services, we do need to know the basic user operations in order
to model normal behaviour. CLAMP [21] is an architecture for preventing data leaks even in the presence
of attacks. By isolating code at the web server layer and data at the database layer by users, CLAMP
guarantees that a user’s sensitive data can only be accessed by code running on behalf of different users.
In contrast, Double Guard focuses on modelling the mapping patterns between HTTP requests and DB
queries to detect malicious user sessions. There are additional differences between these two in terms of
requirements and focus. CLAMP requires modification to the existing application code, and the Query
Restrictor works as a proxy to mediate all database access requests. Moreover, resource requirements
and overhead differ in order of magnitude: Double Guard uses process isolation whereas CLAMP requires
platform virtualization, and

CLAMP provides more coarse-grained isolation than Double Guard. However, Double Guard would be
ineffective at detecting attacks if it were to use the coarse grained isolation as used in CLAMP. Building
the mapping model in Double Guard would require a large number of isolated web stack instances so that
mapping patterns would appear across different session instances.

Fig. 1: Classic three-tier model

The web server acts as the front end, and database as the content storage back end.Fig. 1 illustrates
the classic three-tier model. At the database side, we are unable to tell which transaction corresponds to
which client request. The communication between the web server and the database server is not
separated, and we can hardly understand the relationships among them.

Building the Normality Model

This container-based and session-separated web server architecture not only enhances the security
performances but also provides us with the isolated information flows that are separated in each
container session. It allows us to identify the mapping between the web server requests and the
subsequent DB queries, and to utilize such a mapping model to detect abnormal behaviours on a
session/client level. In typical three-tiered web server architecture, the web server receives HTTP
requests from user clients and then issues SQL queries to the database server to retrieve and update data.
These SQL queries are causally dependent on the web request hitting the web server. We want to model
such causal mapping relationships of all legitimate traffic so as to detect abnormal/attack traffic.

Fig. 2: Web server instances running in containers

692 K. Anita Davamani et.al

Fig. 2 depicts how communications are categorized as sessions and how database transactions can be
related to a corresponding session. According to Fig. 1, if Client 2 is malicious and takes over the web
server, all subsequent database transactions become suspect, as well as the response to the client. By
contrast, according to

Fig. 2, Client 2 will only compromise the VE 2, and the corresponding database transaction set T2 will
be the only affected section of data within the database.

Once we build the mapping model, it can be used to detect abnormal behaviours. Both the web request
and the database queries within each session should be in accordance with the model. If there exists any
request or query that violates the normality model within a session, then the session will be treated as a
possible attack.

OPEN VZ
Nowadays data are more valuable and hence database should receive the highest level of protection.

Therefore, significant research efforts have been made on database IDS and database firewalls. These
softwares, such as Green SQL, work as a reverse proxy for database connections. Instead of connecting to
a database server, web applications will first connect to a database firewall. SQL queries are analysed; if
they’re deemed safe, they are then forwarded to the back- end database server. The system proposed in
composes both web IDS and database IDS to achieve more accurate detection, and it also uses a reverse
HTTP proxy to maintain a reduced level of service in the presence of false positives. However, we found
that certain types of attack utilize normal traffics and cannot be detected by either the web IDS or the
database IDS. In such cases, there would be no alerts to correlate. In our system, the new container-based
web server architecture enables us to separate the different information flows by each session. This
provides a means of tracking the information flow from the web server to the database server for each
session.

Virtualization is used to isolate objects and enhance security performance. Full virtualization and
Para-virtualization are not the only approaches being taken. An alternative is a lightweight virtualization,
such as Open VZ, Parallels Virtuoso, or Linux-V Server. In general, these are based on some sort of
container concept. With containers, a group of processes still appears to have its own dedicated system,
yet it is running in an isolated environment. On the other hand, lightweight containers can have
considerable performance advantages over full virtualization or Para-virtualization. in our system, we
utilized the container ID to separate session traffic as a way of extracting and identifying causal
relationships between web server requests and database query events.

It is possible to initialize thousands of containers on a single physical machine, and these virtualized
containers can be discarded, reverted, or quickly reinitialized to serve new sessions. A single physical web
server runs many containers, each one an exact copy of the original web server. Our approach
dynamically generates new containers and recycles used ones. As a result, a single physical server can run
continuously and serve all web requests. However, from a logical perspective, each session is assigned to
a dedicated web server and isolated from other sessions. Since we initialize each virtualized container
using a read-only clean template, we can guarantee that each session will be served with a clean web
server instance at initialization. We choose to separate communications at the session level so that a
single user always deals with the same web server. Sessions can represent different users to some extent,
and we expect the communication of a single user to go to the same dedicated web server, thereby
allowing us to identify suspect behaviour by both session and user. If we detect abnormal behaviour in a
session, we will treat all traffic within this session as tainted. If an attacker compromises a vanilla web
server, other sessions’ communications can also be hijacked. In our system, an attacker can only stay
within the web server containers that he/she is connected to, with no knowledge of the existence of other
session communications. We can thus ensure that legitimate sessions will not be compromised directly by
an attacker.

ATTACK SCENARIOS
Our system is effective at capturing the following types of attacks:

Privilege Escalation Attack

Let’s assume that the website serves both regular users and administrators. For a regular user, the
web request ru will trigger the set of SQL queries Qu; for an administrator, the request ra will trigger the
set of admin level queries Qa. Now suppose that an attacker logs into the web server as a normal user,
upgrades his/her privileges, and triggers admin queries so as to obtain an administrator’s data.

693 Eurasian Journal of Analytical Chemistry

This attack can never be detected by either the web server IDS or the database IDS since both ru and
Qa are legitimate requests and queries. Our approach, however, can detect this type of attack since the DB
query Qa does not match the request ru, according to our mapping model.

Hijack Future Session Attack
This class of attacks is mainly aimed at the web server side. An attacker usually takes over the web

server and therefore hijacks all subsequent legitimate user sessions to launch attacks. For instance, by
hijacking other user sessions, the attacker can eavesdrop, send spoofed replies, and/or drop user
requests. A session-hijacking attack can be further categorized as a Spoofing/Man-in-the-Middle attack,
an Ex filtration Attack, a Denial-of-Service/Packet Drop attack, or a Replay attack. As each user’s web
requests are isolated into a separate container, an attacker can never break into other users’ sessions.

Injection Attack

Attacks such as SQL injection do not require compromising the web server. Attackers can use existing
vulnerabilities in the web server logic to inject the data or string content that contains the exploits and
then use the web server to relay these exploits to attack the back-end database. Since our approach
provides a two-tier detection, even if the exploits are accepted by the web server, the relayed contents to
the DB server would not be able to take on the expected structure for the given web server request. For
instance, since the SQL injection attack changes the structure of the SQL queries, even if the injected data
were to go through the web server side, it would generate SQL queries in a different structure that could
be detected as a deviation from the SQL query structure that would normally follow such a web request.

Direct DB Attack

It is possible for an attacker to bypass the web server or firewalls and connect directly to the database.
An attacker could also have already taken over the web server and be submitting such queries from the
web server without sending web requests. Without matched web requests for such queries, a web server
IDS could detect neither. Furthermore, if these DB queries were within the set of allowed queries, then
the database IDS itself would not detect it either. However, this type of attack can be caught with our
approach since we cannot match any web requests with these queries.

PERFORMANCE EVALUATION
We implemented a prototype of Double Guard using a web server with a back-end DB. We also set up

two testing websites, one static and the other dynamic. To evaluate the detection results for our system,
we analyzed four classes of attacks.

This was deployed as part of our centre website in production environment and served 52 unique web
pages. For our analysis, we collected real traffic to this website for more than two weeks and obtained
1,172 user sessions. To test our system in a dynamic website scenario, we set up a dynamic Blog using the
Word press [18] blogging software. In our deployment, site visitors were allowed to read, post, and
comment on articles. All models for the received front-end and back-end traffic were generated. We
discuss performance overhead, which is common for both static and dynamic models in our analysis, we
did not take into consideration the potential for caching expensive requests to further reduce the end-to-
end latency.

Fig. 3: Performance evaluation using http_ load. The overhead is between 10.3 to 26.2 percent

694 K. Anita Davamani et.al

Fig. 4: Performance evaluation using auto bench

For the http_ load evaluation, we used the rate of five (i.e., it emulated five concurrent users). We
tested under the parameters of 100, 200, and 400 total fetches, as well as 3 and 10 seconds of fetches. For
example, in the 100-fetches benchmark, http_ load fetches the URLs as fast as it can 100 times. Similarly,
in the 10-seconds benchmark, http _load fetches the URLs as fast as it can during the last 10 seconds. We
picked 15 major URLs of the website and tested them against both servers. Fig. 3 shows our experiment
results.

Fig. 4 shows that when the rate was less than 110 concurrent sessions per second, both servers could
handle requests fairly well. Beyond that point, the rates in the container-based server showed a drop: for
150 sessions per second, the maximum overhead reflected in the reply rate was around 21 percent (rate
of 130). Notice that 21 percent was the worst case scenario for this experiment, which is fairly similar to
26.2 percent in the http _load experiment.

When the server was not overloaded, and for our server this was represented by a rate of less than
110 concurrent sessions per second, the performance overhead was negligible.

CONCLUSIONS
We presented an intrusion detection system that builds models of normal behaviour for multi-tiered

web applications from both front-end web (HTTP) requests and back-end database (SQL) queries. Unlike
previous approaches that correlated or summarized alerts generated by independent IDSs, system forms
a container-based IDS with multiple input streams to produce alerts. We have shown that such
correlation of input streams provides a better characterization of the system for anomaly detection
because the intrusion sensor has a more precise normality model that detects a wider range of threats.
We achieved this by isolating the flow of information from each web server session with a lightweight
virtualization. Furthermore, we quantified the detection accuracy of our approach when we attempted to
model static and dynamic web requests with the back-end file system and database queries. For static
websites, we built a well-correlated model, which our experiments proved to be effective at detecting
different types of attacks. Moreover, we showed that this held true for dynamic requests where both
retrieval of information and updates to the back-end database occur using the web server front end.
When we deployed our prototype on a system that employed Apache web server, a blog application, and a
My SQL back end, system was able to identify a wide range of attacks with minimal false positives. As
expected, the number of false positives depended on the size and coverage of the training sessions we
used. Finally, for dynamic web applications, we reduced the false positives to 0.6 percent.

REFERENCES
[1] Das, J., Das, M. P., & Velusamy, P. (2013). Sesbania grandiflora leaf extract mediated green

synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 265-270.

[2] Umanath, K.P.S.S.K., Palanikumar, K., & Selvamani, S. T. (2013). Analysis of dry sliding wear
behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Composites Part B:
Engineering, 53, 159-168.

[3] Udayakumar, R., Khanaa, V., Saravanan, T., & Saritha, G. (1786). Cross layer optimization for
wireless network (WIMAX). Middle-East Journal of Scientific Research, 16(12), 1786-1789.

[4] Kumaravel, A., & Rangarajan, K. (2013). Algorithm for automaton specification for exploring
dynamic labyrinths. Indian Journal of Science and Technology, 6(5S), 4554-4559.

695 Eurasian Journal of Analytical Chemistry

[5] Pieger, S., Salman, A., & Bidra, A.S. (2014). Clinical outcomes of lithium disilicate single crowns
and partial fixed dental prostheses: a systematic review. The Journal of prosthetic
dentistry, 112(1), 22-30.

[6] Vijayaraghavan, K., Nalini, S.K., Prakash, N.U., & Madhankumar, D. (2012). One step green
synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver
somniferum. Colloids and Surfaces B: Biointerfaces, 94, 114-117.

[7] Khanaa, V., Mohanta, K., & Satheesh, B. (2013). Comparative study of uwb communications over
fiber using direct and external modulations. Indian Journal of Science and Technology, 6(6),
4845-4847.

[8] Khanaa, V., Thooyamani, K. P., & Udayakumar, R. (1798). Cognitive radio based network for ISM
band real time embedded system. Middle-East Journal of Scientific Research, 16(12), 1798-1800.

[9] Vijayaraghavan, K., Nalini, S.K., Prakash, N.U., & Madhankumar, D. (2012). Biomimetic synthesis of
silver nanoparticles by aqueous extract of Syzygium aromaticum. Materials Letters, 75, 33-35

[10] Caroline, M.L., Sankar, R., Indirani, R.M., & Vasudevan, S. (2009). Growth, optical, thermal and
dielectric studies of an amino acid organic nonlinear optical material: l-Alanine. Materials
Chemistry and Physics, 114(1), 490-494.

[11] Kumaravel, A., & Pradeepa, R. (2013). Efficient molecule reduction for drug design by intelligent
search methods. International Journal of Pharma and Bio Sciences, 4(2), B1023-B1029.

[12] Kaviyarasu, K., Manikandan, E., Kennedy, J., Jayachandran, M., Ladchumananandasiivam, R., De
Gomes, U. U., & Maaza, M. (2016). Synthesis and characterization studies of NiO nanorods for
enhancing solar cell efficiency using photon upconversion materials. Ceramics
International, 42(7), 8385-8394.

[13] Sengottuvel, P., Satishkumar, S., & Dinakaran, D. (2013). Optimization of multiple characteristics
of EDM parameters based on desirability approach and fuzzy modeling. Procedia Engineering, 64,
1069-1078.

[14] Anbuselvi S., Chellaram, С., Jonesh S., Jayanthi L., & Edward J.K.P. (2009). Bioactive potential of
coral associated gastropod, Trochus tentorium of Gulf of Mannar, Southeastern India. J. Med. Sci,
9(5), 240-244.

[15] Kaviyarasu, K., Ayeshamariam, A., Manikandan, E., Kennedy, J., Ladchumananandasivam, R.,
Gomes, U. U., & Maaza, M. (2016). Solution processing of CuSe quantum dots: Photocatalytic
activity under RhB for UV and visible-light solar irradiation. Materials Science and Engineering:
B, 210, 1-9.

[16] Kumaravel, A., & Udayakumar, R. (2013). Web portal visits patterns predicted by intuitionistic
fuzzy approach. Indian Journal of Science and Technology, 6(5S), 4549-4553.

[17] Srinivasan, V., & Saravanan, T. (2013). Reformation and market design of power sector. Middle-
East Journal of Scientific Research, 16(12), 1763-1767.

[18] Kaviyarasu, K., Manikandan, E., Kennedy, J., & Maaza, M. (2015). A comparative study on the
morphological features of highly ordered MgO: AgO nanocube arrays prepared via a
hydrothermal method. RSC Advances, 5(100), 82421-82428.

[19] Kumaravel, A., & Udhayakumarapandian, D. (2013). Consruction of meta classifiers for apple scab
infections. International Journal of Pharma and Bio Sciences, 4(4), B1207-B1213.

[20] Sankari, S. L., Masthan, K. M. K., Babu, N. A., Bhattacharjee, T., & Elumalai, M. (2012). Apoptosis in
cancer-an update. Asian Pacific journal of cancer prevention, 13(10), 4873-4878

[21] Harish, B. N., & Menezes, G. A. (2011). Antimicrobial resistance in typhoidal salmonellae. Indian
journal of medical microbiology, 29(3), 223-229.

[22] Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S., Jaganathan, S. K.,
Ladchumananandasivam, R., & Aanand, J. S. (2017). Rare earth element (REE) lanthanum doped
zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. Journal
of Alloys and Compounds, 723, 1155-1161.

[23] Caroline, M. L., & Vasudevan, S. (2008). Growth and characterization of an organic nonlinear
optical material: L-alanine alaninium nitrate. Materials Letters, 62(15), 2245-2248.

[24] Saravanan T., Srinivasan V., Udayakumar R. (2013). A approach for visualization of
atherosclerosis in coronary artery, Middle - East Journal of Scientific Research, 18(12), 1713-
1717.

696 K. Anita Davamani et.al

[25] Poongothai, S., Ilavarasan, R., & Karrunakaran, C.M. (2010). Simultaneous and accurate
determination of vitamins B1, B6, B12 and alpha-lipoic acid in multivitamin capsule by reverse-
phase high performance liquid chromatographic method. International Journal of Pharmacy and
Pharmaceutical Sciences, 2(4), 133-139.

[26] Udayakumar, R., Khanaa, V., & Saravanan, T. (2013). Synthesis and structural characterization of
thin films of SnO 2 prepared by spray pyrolysis technique. Indian Journal of Science and
Technology, 6(6), 4754-4757

[27] Anbazhagan, R., Satheesh, B., & Gopalakrishnan, K. (2013). Mathematical modeling and simulation
of modern cars in the role of stability analysis. Indian Journal of Science and Technology, 6(5S),
4633-4641.

[28] Caroline, M.L., & Vasudevan, S. (2009). Growth and characterization of bis thiourea cadmium
iodide: A semiorganic single crystal. Materials Chemistry and Physics, 113(2-3), 670-674.

[29] Sharmila, S., Jeyanthi Rebecca, L., & Das, M. P. (2012). Production of Biodiesel from Chaetomorpha
antennina and Gracilaria corticata. Journal of Chemical and Pharmaceutical Research, 4(11),
4870-4874.

[30] Thooyamani, K.P., Khanaa, V., & Udayakumar, R. (2013). An integrated agent system for e-mail
coordination using jade. Indian Journal of Science and Technology, 6(6), 4758-4761.

[31] Caroline, M. L., Kandasamy, A., Mohan, R., & Vasudevan, S. (2009). Growth and characterization of
dichlorobis l-proline Zn (II): A semiorganic nonlinear optical single crystal. Journal of Crystal
Growth, 311(4), 1161-1165.

[32] Caroline, M.L., & Vasudevan, S. (2009). Growth and characterization of L-phenylalanine nitric
acid, a new organic nonlinear optical material. Materials Letters, 63(1), 41-44.

[33] Kaviyarasu, K., Xolile Fuku, Genene T. Mola, E. Manikandan, J. Kennedy, and M. Maaza.
Photoluminescence of well-aligned ZnO doped CeO2 nanoplatelets by a solvothermal
route. Materials Letters, 183(2016), 351-354.

[34] Saravanan, T., & Saritha, G. (2013). Buck converter with a variable number of predictive current
distributing method. Indian Journal of Science and Technology, 6(5S), 4583-4588.

[35] Parthasarathy, R., Ilavarasan, R., & Karrunakaran, C. M. (2009). Antidiabetic activity of Thespesia
Populnea bark and leaf extract against streptozotocin induced diabetic rats. International Journal
of PharmTech Research, 1(4), 1069-1072.

[36] Hanirex, D. K., & Kaliyamurthie, K. P. (2013). Multi-classification approach for detecting thyroid
attacks. International Journal of Pharma and Bio Sciences, 4(3), B1246-B1251

[37] Kandasamy, A., Mohan, R., Lydia Caroline, M., & Vasudevan, S. (2008). Nucleation kinetics, growth,
solubility and dielectric studies of L‐proline cadmium chloride monohydrate semi organic
nonlinear optical single crystal. Crystal Research and Technology: Journal of Experimental and
Industrial Crystallography, 43(2), 186-192.

[38] Srinivasan, V., Saravanan, T., Udayakumar, R., & Saritha, G. (2013). Specific absorption rate in the
cell phone user’s head. Middle-East Journal of Scientific Research, 16(12), 1748-50.

[39] Udayakumar R., Khanaa V., & Saravanan T. (2013). Chromatic dispersion compensation in optical
fiber communication system and its simulation, Indian Journal of Science and Technology, 6(6),
4762-4766.

[40] Vijayaragavan, S.P., Karthik, B., Kiran, T.V.U., & Sundar Raj, M. (1990). Robotic surveillance for
patient care in hospitals. Middle-East Journal of Scientific Research, 16(12), 1820-1824.

[41] Annie, J.P., Dr. Paul, S., & Dr. Ponmary Pushpalatha, D. (2014). Decision Tree Analysis to Predict
Traffic Congestion in Transport Routing. International Scientific Journal on Science Engineering &
Technology, 17(10), 905-910.

[42] Asha, R.S., & Dr.Jayasree V.K., (2015). Simulative Investigation of Coherent Optical OFDM
Communication with Gbits/s Data Rates. Bonfring International Journal of Research in
Communication Engineering, 5(3), 22-26.

[43] Tsai, C.I., & Lo, C.H., (2014). Integrating Phosphorylation and Catalytic Sites Information into AH-
DB. The SIJ Transactions on Computer Science Engineering & its Applications, 2(4), 54-58.

[44] Bhasker, B., & Dr.Murali, S. (2019). Networks Flaws and Filtering Using KNOD Algorithms.
Bonfring International Journal of Software Engineering and Soft Computing, 9(2), 36-39.

697 Eurasian Journal of Analytical Chemistry

[45] Chávez, J.J.G., & Rodrigues, C.K.D.S. (2015).A Simple Algorithm for Automatic Hopping among
Pools in the Bitcoin Mining Network. The SIJ Transactions on Computer Networks &
Communication Engineering (CNCE), 3(1), 6-11.

[46] Beena Ullala Mata, B.N., & Dr. Meenakshi, M. (2018). Mammogram Image Segmentation by
Watershed Algorithm and Classification through k-NN Classifier. Bonfring International Journal of
Advances in Image Processing, 8(1), 01-07.

[47] Dr.Prabavathy, K. (2018). Enhanced Information Retrieval System (E-IRIS) for Named Entity
Recognition. Journal of Computational Information Systems, 14(3), 108 - 112.

[48] Maalini, D., & Balraj, E. (2018). Secured and Energy Efficient Packet Transmission in Wireless
Sensor Networks using Flooding protocol and AES Algorithm. Journal of Computational
Information Systems, 14(4) 7 - 13.

[49] Dr.Kathirvelu, M., Sethuramalingam, N., Vignesh, M., Vijayakumar, K., & Vasudevamoorthy,
L.(2015). Low Cost Music Mixture Module for Entertainment Industry. International Journal of
Advances in Engineering and Emerging Technology, 7(3), 152-155.

[50] Chandrakala, K., Meenakshy, L., Nivedha, S., Priyanka, P., & Punithalakshmi, R. (2015). A Cross
Layer Based Modern Handover Algorithm for Mobile WiMAX. International Journal of Advances in
Engineering and Emerging Technology, 7(4), 225-236.

	INTRODUCTION
	RELATED WORKS
	SYSTEM ARCHITECTURE
	OPEN VZ
	ATTACK SCENARIOS
	PERFORMANCE EVALUATION
	CONCLUSIONS
	REFERENCES

