Synthesis, Characterization, Crystal Structure and Hirshfeld Surface Studies of Schiff Base Derivatives

N. Madan, K. Sunil*, I.K. Yamuna, Karthik Kumara, N.K. Lokanath
Received: 10 December 2020 • Revised: 20 December 2020 • Accepted: 05 January 2021

Abstract

Schiff bases are the important constituent of many natural sources and have variety of biological activities. The synthesised Compound A contains triazole group, triazoleposses antimicrobial, anti-inflammatory characteristic properties. Synthesised compound was characterized using various techniques and finally confirmed it structure, using X-ray diffraction (XRD) method, and found that the structure of crystal is triclinic with space group P-1, and ORTEP diagrams with 50% probability level displacement ellipsoids drawn, and Hirshfeld surface analysis with intermolecular interaction in crystal structures and employing fingerprint plots and molecular surface contours.

Keywords: Hirshfeld Surface, Schiff Base, X-ray Diffraction, Crystals Structure.

Graphical Abstract

Specification Details

Subject	Oraganic and analytical chemistry, Crystallography
Compounds	(Z)-1-(4-methoxyphenyl)-N-(4H-1,2,4-triazol-4-yl)methanimine an (Z1,2E)-3-phenyl-N-(4H-1,2,4-triazol-4-yl) prop-2-en-1-imine
Category	Crystallography, computational simulations
	Data format X-ray diffraction method of single crystal
Type	Process and analysed
Method	Compounds were synthesized, characterized by spectral analysis, x-ray diffraction method
Accessibility	CCDC-1818661 and CCDC-1883899

INTRODUCTION

Schiff base are the compounds having azomethine group ($-\mathrm{CH}=\mathrm{N}-$). Schiff base compounds was discovered in 1864 by Hugo Schiff. These type of compounds usually prepared by the condensation method by amines with carbonyl compound. Aromatic aldehydes of schiff base have conjugated system are more stable than aliphatic aldehydes and easily polymerizable. Each year number of papers are

[^0]published on schiff base. However, the enormous potential of Schiff bases provides lot of opportunity for creativity in chemicals. Another important class of heterocyclic compounds is triazoles having benzofused structure [1]. Heterocyclic systems containing 1,2,4-triazole aroused great interest because of their application in important areas as diverse as pharmacology, agriculture, industry [2]. Triazoles have lot of application in the medical field [3]. Triazole have pronounced anti-inflammatory, anti-microbial, anti convulsant, antihypoxic, hypoglycemic, anti-tumor and other properties [4]. 1,2,4-triazole are used in medicine which are available in markets nucleusis like Ribavirin, letrozoles etc[5]. Schiff bases compouns are used in many reactions like addition, ring closure etc. [6]. The schiff base structure find major role in the field of chemistry and biology [7]. Schiff bases structures is to improve protein, vitamins etc, in some reactions it is use as ligands [8]. Schiff base derivatives possess antifungus, anticancer, antimicrobial, antitumor etc [9]. Schiff bases have lot of application medicines, reactions, biology. Metal complex of schiff base has effective scavengers of reactive oxygen species ROS acting as anti-oxidants thereby reducing the incidence of certain cancers [10].

PROCEDURE

Synthesis of (Z)-1-(4-Methoxyphenyl)-N-(4H-1,2,4-Triazol-4-yl) Methanimine (Compound-A)

4 -amino- $4 \mathrm{H}-1,2,4$-triazole 00.8408 g (00.01 mole) and anisaldehyde 1.3615 g (0.01 mol) and 10 ml of absolute alcohol are taken in a RB flask, 2-3 drops of sulfuric acid was added and was refluxed for about 3 hours at 98°. Using TLC reaction was monitered for completion, (mobile phase: hexane and ethyl acetate in 1:2 ratio), and was filtered, and solid is separated and recrystallized uing ethyl aceto acetate. Using slow evaporation technique the crystals were grown. MP:273 K. The reaction is shown in the Fig. 1a

Synthesis of (1Z,2E)-3-Phenyl- N-(4H-1,2,4-triazol-4-yl) Prop-2-en-1-Imine (Compound-B)

4 -amino- $4 \mathrm{H}-1,2,4$-triazole 00.8408 g (00.01 mole) and cinnamaldehyde $1.3216 \mathrm{~g}(0.01 \mathrm{~mol})$ and 15 ml of absolute alcohol are taken in a RB flask, 2-3 drops of sulfuric acid was added and refluxed about 3 hours at $98^{\circ} \mathrm{C}$. Using TLC reaction was monitered for completion, (mobile phase: hexane and ethyl acetate in 1:2 ratio), and was filtered and solid is separated and recrystallized using ethyl ace to acetate. Using slow evaporation technique the crystals were grown. MP:457 K. The reaction is shown in Fig. 2

Figure 1: Synthetic scheme -compound-A

Figure 2: Synthetic scheme - compound-B

Spectral Data

IR-Spectra: The characteristic absorption band of the synthesized compound-A and compound-B are as follows.

Compound-A: IR - The peak at $1604 \mathrm{~cm}^{-1}$ are due to $\mathrm{C}=\mathrm{N}$, at $1060 \mathrm{~cm}^{-1}$ and $991 \mathrm{~cm}^{-1}$ by C-Oand $\mathrm{N}-\mathrm{N}$, aromatic C-H at $3104 \mathrm{~cm}^{-1}$.

Compound-B: IR - The peak obtained at $1629 \mathrm{~cm}^{-1}$ are due to $\mathrm{C}=\mathrm{N}$, at $991 \mathrm{~cm}^{-1}$ is $\mathrm{N}-\mathrm{N}$, at $3103 \mathrm{~cm}^{-1}$ by CH in aromatic group, $\mathrm{C}=\mathrm{C}$ at $1496 \mathrm{~cm}^{-1}$.

Compound-A

Compound-B

${ }^{1}$ H NMR Spectra

The ${ }^{1} \mathrm{H}$ NMR peak values in δ-ppm of compound -A and compound -B are as follows.
Compound-A : NMR - ${ }^{1} \mathrm{H} \delta 03.89$ (3H, S, OCH3), $\delta 06.99-7.81$ ($4 \mathrm{H}, \mathrm{m}$, Aromatic), $\delta 08.59$ ($1 \mathrm{H}, \mathrm{S}, \mathrm{N}=\mathrm{CH}$ (triazole)), $\delta 8.62$ ($1 \mathrm{H}, \mathrm{S}, \mathrm{CH}$).

Compound-B : NMR - ${ }^{1} \mathrm{H}, \delta 06.99(1 \mathrm{H}, \mathrm{S}, \mathrm{CH}), \delta 07.02(1 \mathrm{H}, \mathrm{S}, \mathrm{CH}), \delta 07.24-07.56$ ($5 \mathrm{H}, \mathrm{m}$, Aromatic), $\delta 08.40(1 \mathrm{H}, \mathrm{S}, \mathrm{CH}), \delta 08.55(1 \mathrm{H}, \mathrm{S}, \mathrm{N}=\mathrm{CH}$ (triazole)).

Compound-A

Crystallographic Data Collection and Structure Refinement

Schiff base crystals obtained by Slow evaporation technique are choose for XRD study, data of intensity of x ray was taken at 293 K on RigakuXtaLAB Mini diffractometer at 50 kV and $12 \mathrm{~mA}, \mathrm{X}$-ray generator is operated using MoK_{α} radiation of $0.71173 \AA$ wavelength, by fixing χ value at 55° and changing φ from $0^{\circ}-360^{\circ}$, data were collected 00.5° of width in scan and exploring it for $4 \mathrm{~s}, 50 \mathrm{~mm}$ the sample to detector distance.Using Crystal cleardata of intensity was done[11]. By direct methodstructure of crystal was done andby usingleast square technique onF2byUsing program SHELXS and SHELXL, crystals were refined[12-13]. Anisotropically nonhydrogen atom was refined, geometrically positioned the H atom, $\mathrm{CH}=-00.96 \mathrm{~A}^{\circ}$, by ridings models $U_{\text {iso }}[\mathrm{H}]=01.2 U_{\mathrm{eq}}[\mathrm{C}], \mathrm{U}_{\mathrm{is} 0}[\mathrm{H}]=01.5 U_{\mathrm{eq}}[C m e t h y l l]$ it was refined. Repeating many times of refinement,no peak of chemicals significance was found in Fourier's mapand the residual is saturated to desired value and calculation of geometrical was done by PLATON program[14]. The packing diagramswas obtained using the MERCURY Software [15].

Hirshfelds Surface Analysis

The intermolecular interactions was quantified and to visualize the moleculars surfaces, the Hirshfelds surface analysIs (HSA) by crystal Explorer [16] software is the unique tool. In HSA the $d_{\text {norm }}$ surface and the fingerprint plots defined by d_{i} and d_{e}, in the crystalline environment qualitative and quantitative information of the intermolecular interactions is involved. The distance from the nearest nucleus inside to Hirshfeld surface is d_{i} and d_{e} outside the surface. The molecular surface is normalized (equation 1) using $d_{\mathrm{i}}, d_{\mathrm{e}}$ and van der Waal's distance.

RESULT AND DISCUSION

By X ray diffractions analysis the three dimensional structures of the compounds (A) and (B) was confirmed, compound A's crystal structure was found to be Triclinic and space group P1, whereas thecompound B's crystal structure Orthorhombic with $\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$. ORTEP diagrams of molecules A and B, at 5.0\% Probability levelsdisplacement ellipsoids drawn are mentioned in Fig.3. the structure refinement and crystal data details are mentioned below in Table1.

Figure 3: ORTEP diagram

Table 1: Summary of structure refinement and Crystals information

Parameter	Compound A	Compound B
CCDC deposit No.	CCDC 1818661	CCDC 1883899
Molecular formula	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4}$
Formula weight	220.24	198.23
Temperatures	293K	293K
Wavelengths	$00.71074 \mathrm{~A}^{\circ}$	$00.71074 \mathrm{~A}^{\circ}$
Crystals type	Triclinic	Orthorhombics
Space. groups	P1	$\mathrm{P} 21_{1} 2_{1} 2_{1}$
Unit-cells dimention		$\begin{gathered} \hline \mathrm{a}=05.643[7] \mathrm{A}^{\circ} \\ \mathrm{b}=09.277[12] \mathrm{A}^{\circ} \\ \mathrm{c}=19.770[3] \mathrm{A}^{\circ} \\ \alpha=9 \mathrm{o}^{\circ} \\ \beta=9 \mathrm{o}^{\circ} \\ \gamma=9 \mathrm{o}^{\circ} \end{gathered}$
Volume	556.3 [4] A^{03}	1035.0[19] ${ }^{03}$
Z	2	4
Density[calc]	$01.315 \mathrm{Mgm}^{-3}$	$01.272 \mathrm{Mgm}^{-3}$
AbsorptiOn coeff	$00.096 \mathrm{~m} \mathrm{~m}^{-1}$	$00.082 \mathrm{~m} \mathrm{~m}^{-1}$
F_{000}	232	416
Crystals size	$0.31 \times 0.27 \times 0.24 \mathrm{~mm}$	$0.33 \times 0.26 \times 0.21 \mathrm{~m} \mathrm{~m}$
Data collection θ range	$03.23{ }^{\circ}$ to 27.47°	3.01° to 27.50°
Index ranges	$\begin{gathered} -9 \leq h \leq 9 \\ -10 \leq k \leq 6 \\ -12 \leq 1 \leq 13 \\ \hline \end{gathered}$	$\begin{gathered} -4 \leq h \leq 7 \\ -9 \leq k \leq 11 \\ -23 \leq l \leq 25 \\ \hline \end{gathered}$
Reflection Collected.	3252	4218
Independent reflection	2492 [$R_{\text {in }}=0.0157$]	2338 [$R_{\text {in }}=0.1006$]
Absorption correction	Multiscan	Multiscan
Refinement methods	FUll Matrix least square on F^{2}	Full Matrix least square on F^{2}
Data/ parameter/restrain	2492/ 149/0	2338/136/0
Goodness of fit on F^{2}	01.047	01.069
R indices [$\mathrm{I}>2 \sigma$ (I)	$\begin{aligned} \mathrm{R} 1 & =00.52, \\ \mathrm{wR} 2 & =00.1295 \end{aligned}$	$\begin{gathered} \text { R1 }=00.0759, \\ \text { wR2 }=00.1789 \end{gathered}$
R indice [full data]	$\mathrm{R} 1=00.078, \mathrm{wR} 2=00.1414$	$\mathrm{R} 1=00.125, \mathrm{wR} 2=00.2149$
Large dif Peak and Hole	00.184 \& -00.210 eA^{-3}	00.181 and -00.184 eA ${ }^{-3}$

Structure of Crystals

By XRD technique Compounds (A and B) structures was determined. The obtained schiff basecompounds bond angles and bond lengths when compared with standard values are found in good agreement, this data is listed in the Table 2 and Table 3. The dihedral angle and torsion angles describes the molecular spatial orientation, the torsion angles is given Table 4.

Table 2: Compound A\&B, bond lengths (A°)

Compound A	bond lengths	Compound B	Bond lengths
$N_{2}-C_{1}$	$01.299(02)$	$N_{2}-C_{1}$	$01.304(05)$
$N_{2}-N_{3}$	$01.385(02)$	$N_{2}-N_{3}$	$01.402(05)$
$N_{3}-C_{4}$	$01.301(02)$	$N_{3}-C_{4}$	$01.300(05)$
$N_{5}-C_{1}$	$01.343(02)$	$N_{5}-C_{1}$	$01.356(05)$
$N_{5}-C_{4}$	$01.356(02)$	$N_{5}-C_{4}$	$01.359(05)$
$N_{5}-N_{6}$	$01.408(02)$	$N_{5}-N_{6}$	$01.396(05)$
$N_{6}-C_{7}$	$01.271(02)$	$N_{6}-C_{7}$	$01.273(05)$
$C_{7}-C_{8}$	$01.458(02)$	$C_{7}-C_{8}$	$01.425(05)$
$C_{8}-C_{9}$	$01.380(02)$	$C_{8}-C_{9}$	$01.342(05)$
$C_{9}-C_{10}$	$01.388(02)$	$C_{9}-C_{10}$	$01.461(05)$
$C_{10}-C_{11}$	$01.375(02)$	$C_{10}-C_{11}$	$01.399(05)$
$C_{11}-C_{12}$	$01.390(02)$	$C_{12}-C_{13}$	$01.372(07)$
$C_{12}-C_{13}$	$01.367(02)$	$C_{13}-C_{14}$	$01.371(06)$
$O_{14}-C_{15}$	$01.421(03)$	$C_{14}-C_{15}$	$01.389(06)$
$O_{14}-C_{11}$	$01.359(02)$	$C_{10}-C_{15}$	$01.395(05)$
$C_{8}-C_{13}$	$01.397(02)$	$C_{11}-C_{12}$	$01.380(06)$

Table 3: Bond angles (${ }^{0}$)

Compound A	Bond angles	Compound B	Bond angles
$N_{3}-N_{2}-C_{1}$	$106.28(14)$	$N_{3}-N_{2}-C_{1}$	$106.1(03)$
$N_{2}-N_{3}-C_{4}$	$107.58(13)$	$N_{2}-N_{3}-C_{4}$	$107.0(03)$
$N_{6}-N_{5}-C_{4}$	$132.76(14)$	$N_{6}-N_{5}-C_{4}$	$133.1(03)$
$C_{1}-N_{5}-C_{4}$	$105.05(13)$	$N_{6}-N_{5}-C_{1}$	$122.6(03)$
$N_{6}-N_{5}-C_{1}$	$122.19(12)$	$C_{1}-N_{5}-C_{4}$	$104.3(03)$
$N_{5}-N_{6}-C_{7}$	$115.16(12)$	$N_{5}-N_{6}-C_{7}$	$115.9(03)$
$N_{2}-C_{1}-N_{5}$	$111.20(14)$	$N_{2}-C_{1}-N_{5}$	$111.5(03)$
$N_{3}-C_{4}-N_{5}$	$109.89(14)$	$N_{3}-C_{4}-N_{5}$	$111.0(03)$
$N_{6}-C_{7}-C_{8}$	$121.95(14)$	$N_{6}-C_{7}-C_{8}$	$119.1(03)$
$C_{7}-C_{8}-C_{13}$	$122.12(15)$	$C_{7}-C_{8}-C_{9}$	$122.3(03)$
$C_{9}-C_{8}-C_{13}$	$118.13(14)$	$C_{8}-C_{9}-C_{10}$	$127.0(03)$
$C_{7}-C_{8}-C_{9}$	$118.76(14)$	$C_{9}-C_{10}-C_{11}$	$119.7(03)$
$C_{8}-C_{9}-C_{10}$	$121.97(14)$	$C_{9}-C_{10}-C_{15}$	$121.7(03)$
$C_{9}-C_{10}-C 11$	$119.01(15)$	$C_{11}-C_{10}-C_{15}$	$118.5(03)$
$O_{14}-C_{11}-C_{12}$	$115.44(15)$	$C_{10}-C_{11}-C_{12}$	$120.9(04)$
$C_{10}-C 11-C 12$	$119.96(15)$	$C_{11}-C_{12}-C_{13}$	$119.3(04)$
$O_{14}-C_{11}-C_{10}$	$124.58(15)$	$C_{12}-C_{13}-C_{14}$	$121.6(04)$
$C_{11}-C_{12}-C_{13}$	$120.60(16)$	$C_{13}-C_{14}-C_{15}$	$119.4(04)$
$C_{8}-C_{13}-C_{12}$	$120.44(15)$	$C_{10}-C_{15}-C_{14}$	$120.4(04)$
$C_{11}-O_{14}-C_{15}$	$118.93(14)$		

Table 4: Torsion angles (${ }^{\circ}$)

Compound A	Torsion angles	Compound B	Torsion angles
$C_{1}-N_{2}-N_{3}-C_{4}$	$00.08(18)$	$C_{1}-N_{2}-N_{3}-C_{4}$	$-00.6(04)$
$N_{3}-N_{2}-C_{1}-N_{5}$	$00.52(18)$	$N_{3}-N_{2}-C_{1}-N_{5}$	$00.3(04)$
$N_{2}-N_{3}-C_{4}-N_{5}$	$-00.65(18)$	$N_{2}-N_{3}-C_{4}-N_{5}$	$00.7(04)$
$C_{1}-N_{5}-N_{6}-C_{7}$	$-168.43(14)$	$C_{1}-N_{5}-N_{6}-C_{7}$	$162.4(03)$
$C_{4}-N_{5}-N_{6}-C_{7}$	$10.6(02)$	$C_{4}-N_{5}-N_{6}-C_{7}$	$-18.0(03)$
$N_{6}-N_{5}-C_{1}-N_{2}$	$178.35(13)$	$N_{6}-N_{5}-C_{1}-N_{2}$	$179.9(03)$
$C_{4}-N_{5}-C_{1}-N_{2}$	$-00.91(18)$	$C_{4}-N_{5}-C_{1}-N_{2}$	$00.1(03)$
$N_{6}-N_{5}-C_{4}-N_{3}$	$-178.19(15)$	$N_{6}-N_{5}-C_{4}-N_{3}$	$179.8(03)$
$C_{1}-N_{5}-C_{4}-N_{3}$	$00.94(17)$	$C_{1}-N_{5}-C_{4}-N_{3}$	$-00.6(03)$
$N_{5}-N_{6}-C_{7}-C_{8}$	$179.83(13)$	$N_{5}-N_{6}-C_{7}-C_{8}$	$176.8(03)$
$N_{6}-C_{7}-C_{8}-C_{9}$	$179.19(15)$	$N_{6}-C_{7}-C_{8}-C_{9}$	$-178.9(03)$
$N_{6}-C_{7}-C_{8}-C_{13}$	$-00.21(02)$	$C_{7}-C_{8}-C_{9}-C_{10}$	$174.2(03)$
$C_{7}-C_{8}-C_{9}-C_{10}$	$-178.53(14)$	$C_{8}-C_{9}-C_{10}-C_{11}$	$170.3(04)$
$C_{13}-C_{8}-C_{9}-C_{10}$	$00.90(02)$	$C_{8}-C_{9}-C_{10}-C_{15}$	$-13.2(06)$
$C_{7}-C_{8}-C_{13}-C_{12}$	$178.93(16)$	$C_{9}-C_{10}-C_{11}-C_{12}$	$175.5(04)$
$C_{9}-C_{8}-C_{13}-C_{12}$	$-00.51(02)$	$C_{15}-C_{10}-C_{11}-C_{12}$	$-01.3(05)$
$C_{8}-C_{9}-C_{10}-C_{11}$	$-00.52(02)$	$C_{9}-C_{10}-C_{15}-C_{14}$	$-176.9(03)$
$C_{9}-C_{10}-C_{11}-O_{14}$	$178.19(15)$	$C_{11}-C_{10}-C_{15}-C_{14}$	$-00.3(05)$
$C_{9}-C_{10}-C_{11}-C_{12}$	$-00.41(02)$	$C_{10}-C_{11}-C_{12}-C_{13}$	$01.1(06)$
$O_{14}-C_{11}-C_{12}-C_{13}$	$-177.90(17)$	$C_{11}-C_{12}-C_{13}-C_{14}$	$00.5(07)$
$C_{10}-C_{11}-C_{12}-C_{13}$	$00.81(03)$	$C_{12}-C_{13}-C_{14}-C_{15}$	$-01.9(06)$
$C_{11}-C_{12}-C_{13}-C_{8}$	$-00.4(03)$	$C_{13}-C_{14}-C_{15}-C_{10}$	$01.8(05)$
$C_{15}-O_{14}-C_{11}-C_{10}$	$00.3(02)$		
$C_{15}-O_{14}-C_{11}-C_{12}$	$178.92(17)$		

In the structure of compound A, consists of six membered methoxyphenyl and a five membered triazole ring connected through the azomethine group. The compounds crystal structure revealed that it is crystallized with a water molecule, its non-planar, and Dihedral angle is 10.36(9) ${ }^{\circ}$ between its rings. The distance in bond of N6-C7 found 1.271 (2) \AA, which is similar to the reported schiff base structure which was reported earlier and compareable [17]. In the phenyl ring the methoxy group attached is in the same plane with the torsions angle of $0.3(2)^{\circ}$ about C10-C11-014-C15. the molecules structure shows two types of hydrogen bonding ie intra \& inter, of the type $0-\mathrm{H} . . . \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}$. By $\pi \cdots \pi$ interactions the structure is stablized[18-20]. $\operatorname{Cg}(1)--\operatorname{Cg}(2)$,is the center of the ring ($\mathrm{C} 1 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{N} 5$) is Cg 1 and the rings center (C8/C9/C10/C11/C12/C13) is Cg2, andCg1-Cg2 distances is $04.412(2) \mathrm{A}^{\circ}, \alpha=10.36(9)^{\circ}, \beta=$
$40.2^{\circ}, \gamma=37.6^{\circ}$, the perpendicular distances is $C g 1$ on $\operatorname{Cg} 2$ found to be $-3.4941(7) \AA$, the perpendicular distances of Cg 2 on Cg 1 found to be $3.3691[7]$ A the symetry code and a symmetry codes $-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$. Packing diagram was taken along c axis represented in Fig 4. The bridging of molecules through C-H-O hydrogen bond interactions forms $R_{2}^{2}(8)$ ring motif [21-22] and the supra-molecular architecture exhibited by the $0-\mathrm{H} \ldots \mathrm{N}$ interactions of water molecule involved in the crystals structure is shown in Fig. 5.

Figure 4: Packing diagramalong c axis of compound A

Figure 5: The $R_{2}{ }^{2}$ [8] ringsformed by intermolecular C-H--O and hydrogen bond interactions and the supra-molecular architecture exhibited by the $0-H \cdots N$ interactions
In structure of compound B, it has a 5 member membered triazole group and a phenyl group which is six memberedwhich is connected by the carbon chain-azomethine group. The compound B crystal structure found to be orthorhombic with space group $P 2_{1} 2_{1} 2_{1}$. The molecule is found to be nonplanar, and its dihedral angle is $33.9(2)^{0}$ between two rings. The bond distance of azomethine N6-C7 bond is $1.273(5) \AA$. The compound B has intermolecular hydrogen bonds due to which the structure is stabilised and its in the form C-H--N, it also shows interaction of the typer-- π andC- $\mathrm{H} \cdots \pi$; C14$\mathrm{H} 14 \cdots \mathrm{Cg}(2)$, centriod of the (C10/C11/C12/C13/C14/C15) ring is $\mathrm{Cg}(2)$ with a distance $03.510(6) \mathrm{A}^{\circ}$ of C $\mathrm{Cg}, 2.82 \AA$ of $\mathrm{H}--\mathrm{Cg}$ distance, angle of C-H--Cgangle of 132° with $-1 / 2+x,-1 / 2-y,-1-z s y m m e t r y$ code. The packing diagram is represented in Fig.6. The molecules which form bridgeing forms supra molecular self
assemblies through hydrogen bond C-H--N[23] is represented in theFig7. Compound A and B 's hydrogen bond are given in Table 5.

Table 5: Hydrogen bond interaction prameters [$\mathrm{A}^{\circ},{ }^{\circ}$]

D-H--A	D-H	H-A	D-A	D-H-A
$\mathrm{O}(16)-\mathrm{H}(16 \mathrm{~B}) \ldots \mathrm{N}(3)^{*}$	0.85	02.05	$02.893(2)$	176
$\mathrm{O}(16)-\mathrm{H}(16 \mathrm{~A}) \ldots \mathrm{N}(2)^{\mathrm{i}}$	0.85	02.19	$03.016(2)$	166
$\mathrm{C}(4)-\mathrm{H}(4) . . \mathrm{O}(16)^{\mathrm{ii}}$	0.93	02.38	$03.279(2)$	162
$\mathrm{C}(7)-\mathrm{H}(7) . . \mathrm{O}(16)^{\mathrm{ii}}$	0.93	02.34	$03.220(2)$	157
$\mathrm{C}(12)-\mathrm{H}(12) \ldots \mathrm{O}(14)^{\mathrm{iii}}$	0.93	02.59	$03.507(3)$	171

*Intra; I: 1-x, -y, 1-z; II: 1-x, 1-y, 1-z; III: -x, 1-y, -1-z.

Figure 6: Packing diagram along a-axis

Figure 7: Supra-molecular self assemblies exhibited by the C-H...N interactions
Hirshfeld Surfaces Study
Calculation and analysis of crystallographic information and Hirshfelds surfaces study was was done by crystal explorer software [16]. The $d_{\text {norm }}$ plots for compound Amapping with colours scale$00.446 \mathrm{au}($ Blue) ---01.153au(Red) and for compound B -0.560au(blue) to1.320au(red), respectively. In the range of $0.6-2.8 \mathrm{~A}^{0}, 2 \mathrm{D}$ fingerprint plots [24-26] were displayed, di and deare the distance scales.

The fingerprint plots analysis helps to find the $\%$ contribution of intermoleculars individual contactsTo molecular total surfaces. In fingerprints regions plots, colour codes indicated the intercontacts frequency of occurrence, zero occurance represented by white color, minute or little apperance by blue colour, red \& green represents more occurances of any data for (di, de)pairs[17]. In Compound-A, the H-$\mathrm{H}(43.3 \%), \mathrm{N} \cdots \mathrm{H}(19.4 \%), \mathrm{O}-\mathrm{H}(13.6 \%)$ and $\mathrm{C}--\mathrm{H}(13.2 \%)$ contacts has contributes to the total molecular surface. Whereas, in compound $\mathrm{B}, \mathrm{H} \cdots \mathrm{H}(42.3 \%), \mathrm{C} \cdots \mathrm{H}(30.2 \%)$ and $\mathrm{N}-\mathrm{H}(24.8 \%)$ contributes forsurfaces
total areas represented in Fig 8. By using shape index and conventional mapping of $\mathrm{d}_{\text {nor }}$, the molecular surfaces close contact are highlighted repreented in the Fig. 9. On theMolecular Hirshfeld surface the inter-molecular contacts were determined by their colour codes at different regions, the short contact is indicated by red colour, longer contact by blue colour and contacts around the vdW radi by white colour. The concave region of red colour represents π-stackings interaction, The convex region of blue colour represents the molecules ring atoms shape index in hirshfelds [28-29].

Figure 8: Compund A and B's Finger print plots representing each interactions showing the individual contribution

Figure 9: $d_{\text {norm }}[\mathrm{A}]$ \& shape index $[\mathrm{B}]$ of compound A \& B moleculars contact on Hirshfeld surface mapped

CONCLUSIONS

A novel schiff base derivaties of compound A was synthesised and characterized and compared with compound B. The structure was confirmed by XRD technique which revealed that the compound A crystal is Triclinic in structure and space group P1, whereas compound B is orthorhombic with space group $P 2{ }_{1}{ }_{1}{ }_{2}$. Compound A is non-planar, dihedrals angle between 2 rings is $10.36(9)^{0}$, whereas compound B is non-planar, dihedrals angle $33.9(2)^{0}$. The bond distance of azomethine N6-C7 of compound A is 1.271(2) \AA, whereas in compound B is $1.273(5) \AA$, which confirms the compound of the type Schiff base. Compound A structure exhibits hydrogen bondinginter \& intra, $\mathrm{C}-\mathrm{H}--\mathrm{O} \& \mathrm{O}-\mathrm{H}-\mathrm{N}, \mathrm{by} \pi \cdots \pi$ interactions the structure is stabilised, in compound B intermolecular hydrogen bonds stabilises the structure $\mathrm{C}-\mathrm{H}--\mathrm{N}$, it also shows π -$-\pi$ and C-H-- π interactions.

ACKNOWLEDGEMENTS

The authors KS and MN thankful to the Karnataka Council for Technological Upgradation (KCTU) and SSAHE for providing research facility. The authors KK and LNK are thankful to the National Single Crystal Diffractometer Facility, UPE-project, Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru for providing X-ray intensity data.

REFERENCES

[1] Moulin, A., Bibian, M., Blayo, A.L., El Habnouni, S., Martinez, J., \& Fehrentz, J.A. (2010). Synthesis of 3, 4, 5-Trisubstituted-1, 2, 4-triazoles. Chemical reviews, 110(4), 1809-1827.
${ }^{[2]}$ Lazar, F., Keita, A., Ramli, Y., Karrouchi, K., Zaoui, Y., Ansar, M., \& Essassi, E. M. (2014). Synthesis of some new 1, 2, 4-triazole derivatives. Journal of Chemical and Pharmaceutical Research, 6(12), 754-759.
[3] Namratha, B., \& Gaonkar, S.L. (2014). 1, 2, 4-Triazoles: synthetic strategies and pharmacological profiles. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 73-80.
${ }^{[4]}$ Sargsyan, A.B., Avakyan, A.S., Vartanyan, S.O., Stepanyan, G.M., \& Paronikyan, R.V. (2018). Synthesis of New 1, 4-Benzodioxanyl-1, 2, 4-triazole Derivatives. Russian Journal of General Chemistry, 88(4), 839-842.
${ }^{[5]}$ Yunus, U., Bhatti, M.H., Rahman, N., Mussarat, N., Asghar, S., \& Masood, B. (2013). Synthesis, characterization, and biological activity of novel Schiff and Mannich bases of 4-amino-3-(N-phthalimidomethyl)-1, 2, 4-triazole-5-thione. Journal of Chemistry, 2013, 1-8.
[6] Hussain, Z., \& Meeran M.N. (2015). Acta Chimica Slovenica. Research Journal of Pharmaceutical, Biological and Chemical Sciences (RJPBCS), 6(1), 1598.
[7] Kotkar, S.N., \& Juneja, H.D. (2013), Journal of Chemistry, 10, 1155.
[8] Magyari, J., Holló, B.B., Vojinović-Ješić, L.S., Radanović, M.M., Armaković, S., Armaković, S.J., \& Szécsényi, K.M. (2018). Interactions of Schiff base compounds and their coordination complexes with the drug cisplatin. New Journal of Chemistry, 42(8), 5834-5843.
[9] Panneerselvam, P., Priya, M.G., Kumar, N.R., \& Saravanan, G. (2009). Synthesis and pharmacological evaluation of schiff bases of 4-(2-aminophenyl)-morpholines. Indian journal of pharmaceutical sciences, 71(4), 428.
${ }^{[10]}$ M.S. Ismal, M.R. Karim, W. Boadi (2016), Advances in Biological Chemistry, 6, 180-192.
${ }^{[11]}$ Rigaku, CrystalClear, Rigaku Corporation, Tokyo, Japan (2011).
${ }^{[12]}$ Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3-8.
${ }^{[13]}$ G.M. Sheldrick, G.M. Phase annealing in SHELX-90 (1990): direct methods for larger structures, ActaCryst. A, 46, 467-473.
${ }^{[14]}$ Spek, A.L. (1990). PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallographica Section A: Foundations of Crystallography, 46(s1), c34-c34.
${ }^{[15] ~ M a c r a e, ~ C . F ., ~ B r u n o, ~ I . J ., ~ C h i s h o l m, ~ J . A ., ~ E d g i n g t o n, ~ P . R ., ~ M c C a b e, ~ P ., ~ P i d c o c k, ~ E ., ~ \& ~ W o o d, ~ P . A . ~}$ (2008). Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), 466-470.
${ }^{[16]}$ Wolff, S.K., Grimwood, D.J., McKinnon, J.J., Turner, M.J., Jayatilaka, D., \& Spackman, M.A. (2012). CrystalExplorer (Version 3.1). University of Western Australia.
[17] Kala, A.A., Kumara, K., Pavithra, G., Kumar, K.A., \& Lokanath, N.K. (2017). Crystal structure and Hirshfeld surface analysis of (E)-2-(1-(2-phenylhydrazono) ethyl) naphtholen-1-ol. Chemical Data Collections, 7, 107-115.
${ }^{[18]}$ Kumara, K., Shivalingegowda, N., Mahadevaswamy, L.D., Kariyappa, A.K., \& Lokanath, N.K. (2017). Crystal structure studies and Hirshfeld surface analysis of 5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamide. Chemical Data Collections, 9, 251-262.
${ }^{[19]}$ Seth, S.K., Sarkar, D., \& Kar, T. (2011). Use of $\pi-\pi$ forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: crystal structures and hirshfeld surface analyses. CrystEngComm, 13(14), 4528-4535.
${ }^{[20]}$ Kamat, V., Kumara, K., Shaikh, S., Naveen, S., Lokanath, N.K., \& Revankar, V. (2018), Chemical Data Collections 17, 251-262.
${ }^{[21]}$ Nagy, P.I. (2014). Competing intramolecular vs. intermolecular hydrogen bonds in solution. International journal of molecular sciences, 15(11), 19562-19633.
${ }^{[22]}$ Bernstein, J., Davis, R.E., Shimoni, L., \& Chang, N.L. (1995). Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angewandte Chemie International Edition in English, 34(15), 1555-1573.
${ }^{[23]}$ Kumara, K., Kumar, A.D., Naveen, S., Kumar, K.A., \& Lokanath, N.K. (2018). Synthesis, spectral characterization and X-ray crystal structure studies of 3-(benzo [d][1, 3] dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carboxamide: Hirshfeld surface, DFT and thermal analysis. Journal of Molecular Structure, 1161, 285-298.
${ }^{[24]}$ Seth, S.K. (2013). Tuning the formation of MOFs by pH influence: X-ray structural variations and Hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. CrystEngComm, 15(9), 1772-1781.
${ }^{[25]}$ Seth, S.K. (2014). Structural elucidation and contribution of intermolecular interactions in 0hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. Journal of Molecular Structure, 1064, 70-75.
${ }^{[26]}$ Spackman, M.A., \& Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19-32.
${ }^{[27]}$ Kumara, K., Jyothi, M., Shivalingegowda, N., Khanum, S.A., \& Krishnappagowda, L.N. (2017). Synthesis, characterization, crystal structure and Hirshfeld surface analysis of 1-(4-ethoxyphenyl)-3-(4-methylphenyl) prop-2en-1-one. Chemical Data Collections, 9, 152-163.
${ }^{[28]}$ Dean, P.M., Pringle, J.M., Forsyth, C.M., Scott, J.L., \& MacFarlane, D.R. (2008). Interactions in bisamide ionic liquids-insights from a Hirshfeld surface analysis of their crystalline states. New journal of chemistry, 32(12), 2121-2126.
${ }^{[29]}$ Luo, Y.H., Wu, G.G., Mao, S.L., \& Sun, B.W. (2013). Complexation of different metals with a novel Ndonor bridging receptor and Hirshfeld surfaces analysis. Inorganica Chimica Acta, 397, 1-9.

[^0]: N. Madan, Department of Chemistry, Sri Siddhartha Institute of Technology, SSAHE, Tumkuru, India.
 K. Sunil*, Department of Chemistry, Sri Siddhartha Institute of Technology, SSAHE, Tumkuru, India.

 E-mail: sunilk999@gmail.com
 I.K. Yamuna, Department of Chemistry, Coorg Institute of Technology, Halligattu, Kodagu, India.

 Karthik Kumara, Department of Studies in Physics, Manasagangotri, University of Mysuru, Mysuru, India.
 N.K. Lokanath, Department of Studies in Physics, Manasagangotri, University of Mysuru, India.

