‘’Overview On Acute Renal Failure’’
DOI:
https://doi.org/10.53555/ejac.v12i3.1166Keywords:
Acute Kidney Disease, Acute Failure, Evaluation ,Mechanism Of Arf, PreventionAbstract
Acute renal failure (ARF), characterized by sudden loss of the ability of the kidneys to excrete wastes, concentrate urine, conserve electrolytes, and maintain fluid balance, is a frequent clinical problem, particularly in the intensive care unit, where it is associated with a mortality of between 50% and 80%. In this review, the epidemiology and pathophysiology of ARF are discussed, including the vascular, tubular, and inflammatory perturbations. The clinical evaluation of ARF and implications for potential future therapies to decrease the high mortality are described.
During the bombing of London in World War II, Bywaters and Beall described an acute loss of kidney function that occurred in severely injured crush victims (1). Acute tubular necrosis (ATN) was the term coined to describe this clinical entity, because of histological evidence for patchy necrosis of renal tubules at autopsy. In the clinical setting, the terms ATN and acute renal failure (ARF) are frequently used interchangeably. However, for the purposes of this review, the term ARF, rather than ATN, will be used. ARF will not include increases in blood urea due to reversible renal vasoconstriction (prerenal azotemia) or urinary tract obstruction (postrenal azotemia).
References
Arnold PE, Lumlertgul D, Burke TJ, Schrier RW. In vitro versus in vivo mitochondrial calcium loading in ischemic acute renal failure. Am. J. Physiol. 1985;248:F845–F850. doi: 10.1152/ajprenal.1985.248.6.F845. [DOI] [PubMed] [Google Scholar]
Arnold PE, Van Putten VJ, Lumlertgul D, Burke TJ, Schrier RW. Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia. Am. J. Physiol. 1986;250:F357–F363. doi: 10.1152/ajprenal.1986.250.2.F357. [DOI] [PubMed] [Google Scholar]
Burke TJ, et al. Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological, and mitochondrial studies. J. Clin. Invest. 1984;74:1830–1841. doi: 10.1172/JCI111602. [DOI] [PMC free article] [PubMed] [Google Scholar]
Butkus DE. Post-traumatic acute renal failure in combat casualties: a historical review. Mil. Med. 1984;149:117–124. [PubMed] [Google Scholar]
Bywaters EG, Beall D. Crush injuries with impairment of renal function. Br. Med. J. 1941;1:427–432. doi: 10.1136/bmj.1.4185.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
Carvounis CP, Nisar S, Guro-Razuman S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002;62:2223–2229. doi: 10.1046/j.1523-1755.2002.00683.x. [DOI] [PubMed] [Google Scholar]
Coll E, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am. J. Kidney Dis. 2000;36:29–34. doi: 10.1053/ajkd.2000.8237. [DOI] [PubMed] [Google Scholar]
Conger JD, Falk SA. Abnormal vasoreactivity of isolated arterioles from rats with ischemic acute renal (ARF) [abstract] J. Am. Soc. Nephrol. 1993;4:733A. [Google Scholar]
Conger JD, Robinette JB, Schrier RW. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure. J. Clin. Invest. 1988;82:532–537. doi: 10.1172/JCI113628. [DOI] [PMC free article] [PubMed] [Google Scholar]
Esson ML, Schrier RW. Diagnosis and treatment of acute tubular necrosis. Ann. Intern. Med. 2002;137:744–752. doi: 10.7326/0003-4819-137-9-200211050-00010. [DOI] [PubMed] [Google Scholar]
Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237–244. doi: 10.1046/j.1523-1755.2002.00433.x. [DOI] [PubMed] [Google Scholar]
Kelly KJ, Williams WW, Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc. Natl. Acad. Sci. U. S. A. 1994;91:812–816. doi: 10.1073/pnas.91.2.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
Kribben A, Edelstein CL, Schrier RW. Pathophysiology of acute renal failure. J. Nephrol. 1999;12(Suppl. 2):S142–S151. [PubMed] [Google Scholar]
Mason J, Torhorst J, Welsch J. Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure. Kidney Int. 1984;26:283–293. doi: 10.1038/ki.1984.171. [DOI] [PubMed] [Google Scholar]
Mehta RL, et al. Nephrology consultation in acute renal failure: does timing matter? Am. J. Med. 2002;113:456–461. doi: 10.1016/s0002-9343(02)01230-5. [DOI] [PubMed] [Google Scholar]
Miller TR, et al. Urinary diagnostic indices in acute renal failure: a prospective study. Ann. Intern. Med. 1978;89:47–50. doi: 10.7326/0003-4819-89-1-47. [DOI] [PubMed] [Google Scholar]
Molitoris BA, Marrs J. The role of cell adhesion molecules in ischemic acute renal failure. Am. J. Med. 1999;106:583–592. doi: 10.1016/s0002-9343(99)00061-3. [DOI] [PubMed] [Google Scholar]
Neumayer HH, Wagner K. Prevention of delayed graft function in cadaver kidney transplants by diltiazem: outcome of two prospective, randomized clinical trials. J. Cardiovasc. Pharmacol. 1987;10(Suppl. 10):S170–S177. [PubMed] [Google Scholar]
Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am. J. Kidney Dis. 2004;43:405–414. doi: 10.1053/j.ajkd.2003.10.040. [DOI] [PubMed] [Google Scholar]
Racusen, L.C., and Nast, C.C. 1999. Renal histopathology, urine cytology, and cytopathology in acute renal failure. In Atlas of diseases of the kidney. R.W. Schrier, editor. Blackwell Science. Philadelphia, Pennsylvania, USA. 1–9, 12.
Reineck HJ, O’Connor GJ, Lifschitz MD, Stein JH. Sequential studies on the pathophysiology of glycerol-induced acute renal failure. J. Lab. Clin. Med. 1980;96:356–362. [PubMed] [Google Scholar]
Smith LH, Jr, et al. Post-traumatic renal insufficiency in military casualties. II. Management, use of an artificial kidney, prognosis. Am. J. Med. 1955;18:187–198. doi: 10.1016/0002-9343(55)90234-5. [DOI] [PubMed] [Google Scholar]
Teschan PE, et al. Post-traumatic renal insufficiency in military casualties. I. Clinical characteristics. Am. J. Med. 1955;18:172–186. doi: 10.1016/0002-9343(55)90233-3. [DOI] [PubMed] [Google Scholar]
Westhuyzen J, et al. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol. Dial. Transplant. 2003;18:543–551. doi: 10.1093/ndt/18.3.543. [DOI] [PubMed] [Google Scholar]
Whelton A, Donadio JV., Jr Post-traumatic acute renal failure in Vietnam. A comparison with the Korean war experience. Johns Hopkins Med. J. 1969;124:95–105. [PubMed] [Google Scholar]