Molecular Docking Of Dual PPAR Alpha/Gama Agonist For Type 2 Diabetes Structure Based Drug Design For Selective Cyclooxygenase-2(COX 2) Inhibitor
DOI:
https://doi.org/10.53555/69cmgy22Keywords:
Dual PPAR Agonist, Aleglitazar Derivatives, Type 2 Diabetes Mellitus, COX-2 InhibitionAbstract
Type 2 Diabetes Mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance, dyslipidemia, and chronic inflammation. The nuclear receptors PPAR-α and PPAR-γ regulate lipid and glucose metabolism and are prominent therapeutic targets. This study investigates Aleglitazar, a known dual PPAR-α/γ agonist, and its structural derivatives for potential multi-target activity, including COX-2 inhibition. A structure-based drug design (SBDD) approach was employed using molecular docking techniques via AutoDock Vina to simulate ligand binding within the active sites of PPAR-α, PPAR-γ, and COX-2. Five compounds, including the parent Aleglitazar and four functionalized analogues (–COONa, –CH₃, –NH₂, –OH), were computationally optimized and docked against selected target receptors (PDB IDs: 2P54 and 3CS8). Compound 2 (–COONa) exhibited the most favorable binding energy and pose stability for both PPAR isoforms. The study also explored whether COX-2 inhibitory pharmacophores could be integrated without disrupting PPAR binding. Visual analysis using PyMOL confirmed significant receptor interactions, particularly via hydrogen bonding and hydrophobic contacts. The research demonstrates the utility of in silico docking as a cost-effective and predictive tool in the early phases of drug discovery, with implications for the development of dual or triple-target agents with improved efficacy and reduced side effects.References
1. Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct. Target Ther. 2024, 9 (1), 262. doi:10.1038/s41392-024-01951-9.
2. Stirban, A. O.; Andjelkovic, M.; Heise, T.; Nosek, L.; Fischer, A.; Gastaldelli, A.; Herz, M. Aleglitazar, a Dual PPAR α/γ Agonist, Improves Insulin Sensitivity, Glucose Control and Lipid Levels in People with Type 2 Diabetes: Findings from a Randomized, Double Blind Trial. Diabetes Obes. Metab. 2016, 18 (7), 711–715. doi:10.1111/dom.12620.
3. Wagner, N.; Hu, P.; Vázquez Carrera, M.; Changizi, Z.; Qiu, Y. Y. Pharmacological Utility of PPAR Modulation for Cardiovascular Disease and Diabetes. Int. J. Mol. Sci. 2023, 24 (3), 2345. doi:10.3390/ijms24032345.
4. DrugBank. Aleglitazar: Mechanism of Action—PPAR α/γ Agonist. DrugBank 2013. [(accessed on 24 July 2025)]; Available online: https://go.drugbank.com/drugs/DB08915.
5. Nikolaev, K. Y.; Zarghi, A.; El Malah, A. A. The Role of COX 2 and Its Selective Inhibitors in Chronic Diseases Including Type 2 Diabetes. J. Pers. Med. 2022, 12 (5), 845. doi:10.3390/jpm12050845.
6. Wright, M. B.; Burris, T. P.; Hasankhani, A.; Burris, T. P. Challenges and Opportunities in Development of PPAR Modulators: Structural Insights. Hum. Mol. Genet. 2014, 28 (11), 1756–1765. doi:10.1093/hmg/ddt660.
7. Fadaly, W. A. A.; Abdellatif, K. R. A.; Kamel, G. M.; Elshaier, Y. A. M. M.; El Magd, M. A. Discovery of Novel Thiazole Derivatives Containing Pyrazole Scaffold as PPAR γ Agonists, α Glucosidase, α Amylase, and COX 2 Inhibitors: Design, Synthesis, and In Silico Study. Bioorg. Chem. 2024, 162, 106626. doi:10.1016/j.bioorg.2023.106626.
8. El Shoukrofy, M. S.; Ismail, A.; Elhamammy, R. H.; Abdelhady, S. A.; Nassra, R.; Makkar, M. S.; Agami, M. A.; Wahid, A.; Nematalla, H. A.; Sai, M.; Merk, D.; El Yazbi, A. F.; Belal, A. S. F.; Eid, A. H.; Elzahhar, P. A. Novel Thiazolones for the Simultaneous Modulation of PPAR γ, COX 2, and 15 LOX to Address Metabolic Disease Associated Portal Inflammation. Eur. J. Med. Chem. 2025, 289, 117415. doi:10.1016/j.ejmech.2025.117415.
9. Xiao, B.; Jin, L.; Liu, T.; Song, L.; Xing, Y.; Jiang, J.; Xu, Y.; Wang, L.; Ma, X.; Tao, Y. Cyclooxygenase 2 Inhibitor Parecoxib Was Disclosed as a PPAR γ Agonist by In Silico and In Vitro Assay. Biomol. Ther. 2021, 29 (5), 519–528. doi:10.4062/biomolther.2020.218. 10.Fan S., Tong T., Fang L., Wu J., Li E., Kang H., Lv X., Wang X. A facile one-pot synthesis of 2-o-cyanoaryl oxazole derivatives mediated by CuCN. Tetrahedron Lett. 2018;59:1409–1413. doi: 10.1016/j.tetlet.2018.02.058.
11.Giampietro L., Gallorini M., de Filippis B., Amoroso R., Cataldi A., di Giacomo V. PPAR-γ agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem. Int. 2019;126:239–245. doi: 10.1016/j.neuint.2019.03.021.
12.Choudhary N.S., Kumar N., Duseja A. Peroxisome Proliferator-Activated Receptors and Their Agonists in Nonalcoholic Fatty Liver Disease. J. Clin. Exp. Hepatol. 2019;9:731–739. doi: 10.1016/j.jceh.2019.06.004.
13.Shioi R., Okazaki S., Noguchi-Yachide T., Ishikawa M., Makishima M., Hashimoto Y., Yamaguchi T. Switching subtype-selectivity: Fragment replacement strategy affords novel class of peroxisome proliferator-activated receptor α/δ (PPARα/δ) dual agonists. Bioorgan. Med. Chem. Lett. 2017;27:3131–3134. doi: 10.1016/j.bmcl.2017.05.037.
14.Mirza A.Z., Althagafi I.I., Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem. 2019;166:502–513. doi: 10.1016/j.ejmech.2019.01.067.
15.Takada I., Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: A patent review (2014-present) Expert Opin. Ther. Pat. 2020;30:1–13. doi: 10.1080/13543776.2020.1703952.