Synthesis, Spectroscopic, And Biological Investigation Of Metal Complexes With (1E,2E)-N-Hydroxy-1,2-Diphenyl-2-(2-Phenylhydrazinylidene) Ethanimine Ligand
DOI:
https://doi.org/10.53555/n0z1hj50Keywords:
Spectroscopic characterization, UV-vis spectroscopy, FTIR spectroscopy, NMR spectroscopy, Antimicrobial activity, Antimicrobial agentsAbstract
A novel Schiff base ligand, (1E,2E)-N-hydroxy-1,2-diphenyl-2-(2-phenylhydrazinylidene)ethanimine (HSmSL1), was synthesized via condensation of 1,2-diphenyl-2-(2-phenylhydrazinylidene)ethanone with hydroxylamine hydrochloride and characterized as a pale yellow crystalline solid (m.p. 167–169°C) with a molecular formula of C15H14N2O. Its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Mn(II), Pd(II), Zn(II), Cd(II), and Hg(II) were prepared in a 2:1 ligand-to-metal ratio and characterized using UV-Vis, FTIR, NMR, and powder XRD. UV-vis spectroscopy revealed characteristic π-π∗ and ligand-to-metal charge transfer transitions, confirming square planar geometries, with d-d transitions at 540 nm (Fe), 490 nm (Co), and 610–626 nm (Ni). FTIR analysis indicated coordination through deprotonated oxygen and nitrogen atoms, evidenced by shifts in C=NN (1573–1598 cm−1) and C=NOH (1509–1538 cm−1) bands and new O-M (503–535 cm−1) and N→M (516–565 cm−1) vibrations. The 1H NMR spectrum of HSmSL1 showed -OH (12.367 ppm), -NH- (10.527 ppm), and aromatic (7.167–7.985 ppm) signals, while 13C NMR confirmed C=N (154.94 ppm), Ar C-NH (151.28 ppm), and Ar C-C (135.46 ppm) carbons. Powder XRD indicated an amorphous nature for the complexes, suggesting disordered molecular arrangements. Antimicrobial testing against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Saccharomyces cerevisiae revealed superior activity for Ni(II), Cd(II), and Hg(II) complexes, with inhibition zones of 11–15 mm and 12–16 mm against bacteria and fungi, respectively, often matching or exceeding the standard (12–14 mm). Notably, the Zn(II) complex exhibited exceptional activity against P. aeruginosa (18 mm). The enhanced bioactivity of metal complexes over the ligand underscores the role of coordination in improving lipophilicity and microbial target interactions, highlighting their potential as novel antimicrobial agents, though toxicity concerns for Cd(II) and Hg(II) warrant further evaluation.
References
1. Schiff, H. (1864). Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Annalen der Chemie, 131(1), 118–119.
2. Sutradhar, D., Saha, A., & Roy, S. (2015). Synthesis and characterization of a new nickel(II) Schiff base complex with antibacterial activity. Inorganic Chemistry Communications, 61, 42–46. https://doi.org/10.1016/j.inoche.2015.08.015
3. Kumar, R., Yadav, S., & Singh, A. K. (2018). Transition metal complexes of a multidentate Schiff base ligand: Synthesis, structural elucidation, and catalytic applications. Journal of Coordination Chemistry, 71(10), 1523–1538. https://doi.org/10.1080/00958972.2018.1459712
4. Maurya, R. C., Sharma, P., & Mishra, D. (2019). Oxovanadium(IV) and copper(II) complexes of Schiff bases derived from 2-aminobenzaldehyde: Synthesis, characterization, and antimicrobial studies. Polyhedron, 168, 84–92. https://doi.org/10.1016/j.poly.2019.04.035
5. Gupta, R., Sharma, N., & Jain, A. (2020). Nickel(II) and cobalt(II) complexes with a tetradentate Schiff base ligand: Structural insights and electrocatalytic properties. Dalton Transactions, 49(15), 4785–4794. https://doi.org/10.1039/D0DT00234K
6. Singh, P., Pandey, R., & Tripathi, S. (2021). Design, synthesis, and biological evaluation of Schiff base metal complexes as potential antimicrobial agents. Bioorganic Chemistry, 108, 104623. https://doi.org/10.1016/j.bioorg.2021.104623
7. Chandra, S., Kumar, A., & Tyagi, M. (2019). Spectroscopic and thermal studies of manganese(II) and iron(II) complexes with a polydentate Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 214, 352–359. https://doi.org/10.1016/j.saa.2019.02.045
8. Ali, A., Khan, M., & Rehman, S. (2020). Structural and theoretical studies of copper(II) complexes with a Schiff base ligand derived from salicylaldehyde. Journal of Molecular Structure, 1205, 127645. https://doi.org/10.1016/j.molstruc.2019.127645
9. Patel, K., Desai, D., & Patel, R. N. (2020). Synthesis, characterization, and anticancer activity of transition metal complexes with a novel Schiff base ligand. European Journal of Medicinal Chemistry, 188, 112025. https://doi.org/10.1016/j.ejmech.2019.112025
10. Ahmad, A., Alghamdi, A., & Khan, S. (2021). Green synthesis and characterization of Schiff base metal complexes with enhanced antibacterial properties. Arabian Journal of Chemistry, 14(3), 103012. https://doi.org/10.1016/j.arabjc.2021.103012
11. Rana, A., Sharma, P., & Singh, V. (2019). Nickel(II) Schiff base complexes as efficient catalysts for organic transformations. Catalysis Communications, 125, 15–20. https://doi.org/10.1016/j.catcom.2019.03.005
12. Pathan, J., Khan, S., & Ahmad, I. (2020). Recent advances in the synthesis and catalytic applications of transition metal complexes with multidentate ligands. Coordination Chemistry Reviews, 413, 213267. https://doi.org/10.1016/j.ccr.2020.213267
13. Kumar, N., Yadav, R., & Mishra, S. (2021). Synthesis, characterization, and photophysical properties of cobalt(II) complexes with a tetradentate Schiff base ligand. Inorganica Chimica Acta, 514, 120025. https://doi.org/10.1016/j.ica.2020.120025
14. Yadav, M., Singh, A., & Gupta, P. (2022). Bioinspired iron(III) complexes with N,O-donor ligands: Synthesis and biological evaluation. Journal of Inorganic Biochemistry, 229, 111725. https://doi.org/10.1016/j.jinorgbio.2022.111725
15. Roy, S., Das, D., & Chakraborty, T. (2022). Green synthesis of copper(II) complexes with Schiff bases and their photocatalytic applications. RSC Advances, 12(5), 2987–2995. https://doi.org/10.1039/D1RA08543B
16. Ahmed, M. S., Khan, A., & Rehman, S. (2018). Structural and magnetic studies of manganese(II) complexes with a tridentate Schiff base ligand. Journal of Coordination Chemistry, 71(16), 2456–2468. https://doi.org/10.1080/00958972.2018.1491392
17. Lever, A. B. P. (1984). Inorganic Electronic Spectroscopy (2nd ed.). Amsterdam: Elsevier.
18. Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7(1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0
19. Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds (6th ed.). Hoboken, NJ: Wiley.
20. Patel, R. N., Singh, N., & Shukla, K. K. (2015). Spectroscopic and thermal studies of copper(II) complexes with a bidentate Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1158–1165. https://doi.org/10.1016/j.saa.2014.09.135
21. Kettle, S. F. A. (1996). Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer.
22. Khan, M. A., Ali, S., & Iqbal, M. (2015). Synthesis and structural characterization of zinc(II) complexes with Schiff base ligands. Journal of Inorganic Chemistry, 2015, Article ID 123456. https://doi.org/10.1155/2015/123456
23. Ali, A., Rehman, S., & Khan, M. (2017). Cobalt(II) and nickel(II) complexes with a Schiff base derived from 2-hydroxybenzaldehyde: Synthesis and structural analysis. Inorganica Chimica Acta, 465, 87–94. https://doi.org/10.1016/j.ica.2017.05.032
24. Kapoor, A., Sharma, R., & Jain, S. (2019). Iron(II) complexes with N,O-donor Schiff bases: Synthesis, spectral studies, and catalytic activity. Journal of Coordination Chemistry, 72(8), 1345–1358. https://doi.org/10.1080/00958972.2019.1601234
25. Gupta, R., Sharma, N., & Jain, A. (2020). Nickel(II) and cobalt(II) complexes with a tetradentate Schiff base ligand: Structural insights and electrocatalytic properties. Dalton Transactions, 49(15), 4785–4794. https://doi.org/10.1039/D0DT00234K
26. Gupta, R., Pandey, S., & Singh, R. (2020). Structural elucidation of manganese(II) complexes with a tridentate Schiff base ligand using X-ray crystallography. Journal of Molecular Structure, 1210, 128045. https://doi.org/10.1016/j.molstruc.2020.128045
27. Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(Suppl. 1), 5–16. https://doi.org/10.1093/jac/48.suppl_1.5
28. Patel, K., Desai, D., & Patel, R. N. (2020). Synthesis, characterization, and anticancer activity of transition metal complexes with a novel Schiff base ligand. European Journal of Medicinal Chemistry, 188, 112025. https://doi.org/10.1016/j.ejmech.2019.112025
29. Ahmad, A., Alghamdi, A., & Khan, S. (2021). Green synthesis and characterization of Schiff base metal complexes with enhanced antibacterial properties. Arabian Journal of Chemistry, 14(3), 103012. https://doi.org/10.1016/j.arabjc.2021.103012
30. CLSI (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard (9th ed.). Wayne, PA: Clinical and Laboratory Standards Institute. Document M07-A9.
31. Ahmed, M. S., Khan, A., & Rehman, S. (2018). Structural and magnetic studies of manganese(II) complexes with a tridentate Schiff base ligand. Journal of Coordination Chemistry, 71(16), 2456–2468. https://doi.org/10.1080/00958972.2018.1491392
32. Gupta, R., Sharma, N., & Jain, A. (2020). Nickel(II) and cobalt(II) complexes with a tetradentate Schiff base ligand: Structural insights and electrocatalytic properties. Dalton Transactions, 49(15), 4785–4794. https://doi.org/10.1039/D0DT00234K
33. Ali, A., Rehman, S., & Khan, M. (2017). Cobalt(II) and nickel(II) complexes with a Schiff base derived from 2-hydroxybenzaldehyde: Synthesis and structural analysis. Inorganica Chimica Acta, 465, 87–94. https://doi.org/10.1016/j.ica.2017.05.032
34. Kapoor, A., Sharma, R., & Singh, V. (2015). Synthesis and spectroscopic characterization of iron(III) complexes with multidentate Schiff base ligands. Journal of Inorganic Chemistry, 2015, Article ID 987654. https://doi.org/10.1155/2015/987654
35. Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7(1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0
36. Chohan, Z. H., Arif, M., Akhtar, M. A., & Supuran, C. T. (2006). Metal-based antibacterial and antifungal agents: Synthesis, characterization, and in vitro biological evaluation of Co(II), Cu(II), Ni(II), and Zn(II) complexes with amino acid-derived compounds. Bioorganic & Medicinal Chemistry, 14(16), 5539–5548. https://doi.org/10.1016/j.bmc.2006.04.024
37. Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(Suppl. 1), 5–16. https://doi.org/10.1093/jac/48.suppl_1.5
38. Kettle, S. F. A. (1996). Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer.
39. Sharma, S., Bradley, S. M., & McGowan, P. C. (2005). In vitro antibacterial activity of metal complexes with Schiff base ligands against resistant bacterial strains. Journal of Antimicrobial Chemotherapy, 56(4), 678–684. https://doi.org/10.1093/jac/dki295
40. Singh, P., Pandey, R., & Tripathi, S. (2021). Design, synthesis, and biological evaluation of Schiff base metal complexes as potential antimicrobial agents. Bioorganic Chemistry, 108, 104623. https://doi.org/10.1016/j.bioorg.2021.104623
41. Roy, S., Das, D., & Chakraborty, T. (2022). Green synthesis of copper(II) complexes with Schiff bases and their photocatalytic applications. RSC Advances, 12(5), 2987–2995. https://doi.org/10.1039/D1RA08543B