Molecular Docking Techniques in Drug Discovery: A Comprehensive Review

Authors

  • Shubham Shende
  • Amit Awari
  • Mahesh Hadke
  • Praful Urade

DOI:

https://doi.org/10.53555/jz74bk11

Keywords:

Molecular docking, drug discovery, virtual screening, scoring function, structure-based drug design, lead optimization

Abstract

Molecular docking has emerged as a cornerstone of modern drug discovery and development. By predicting the binding orientation and affinity of small molecules to their biological targets, docking enables rational design of therapeutics, accelerates lead identification, and reduces the reliance on resource-intensive experimental approaches. This review provides a comprehensive overview of molecular docking techniques, including fundamental principles, algorithms, scoring functions, and software tools. Emphasis is placed on the applications of docking in hit identification, lead optimization, drug repurposing, and mechanistic studies. Additionally, the limitations of docking methodologies are critically discussed, with special attention to challenges in protein flexibility, solvation models, and scoring accuracy. Finally, future perspectives are explored, highlighting the integration of artificial intelligence, molecular dynamics, and high-throughput screening in advancing the accuracy and predictive power of docking. Collectively, this review underscores the indispensable role of molecular docking in structure-based drug discovery.

 

Author Biographies

  • Shubham Shende

    Department of Pharmaceutics, Manwatkar College of Pharmacy, Chandrapur, India,

     

  • Amit Awari

    Manwatkar College of Pharmacy, Chandrapur, Maharashtra,  India.

  • Mahesh Hadke

    Manwatkar College of Pharmacy, Chandrapur, Maharashtra,  India.

  • Praful Urade

    Manwatkar College of Pharmacy, Chandrapur, Maharashtra,  India.

References

1. Gupta, Pooja, et al. "Computer-aided Drug Design: Innovation and its Application in Reshaping Modern Medicine." Current Artificial Intelligence (2024).

2. Pant, Shubham, et al. "Structure-based drug designing." Bioinformatics. Academic Press, 2022. 219-231.

3. Muhammed, Muhammed T., and Esin Aki-Yalcin. "Molecular docking: principles, advances, and its applications in drug discovery." Letters in Drug Design & Discovery 21.3 (2024): 480-495.

4. Bottegoni, Giovanni, et al. "Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking." Journal of medicinal chemistry 52.2 (2009): 397-406.

5. Kumar, Anup. "Quantum Computing's Role in Advancing Sustainability." Digital Transformation for Business Sustainability and Growth in Emerging Markets. Emerald Publishing Limited, 2025. 85-114.

6. Ferreira, Leonardo G., et al. "Molecular docking and structure-based drug design strategies." Molecules 20.7 (2015): 13384-13421.

7. Schneider, HJ. "Introduction to molecular recognition models." Protein-Ligand Interactions: From Molecular Recognition to Drug Design (2003): 21-50.

8. Gschwend, Daniel A., Andrew C. Good, and Irwin D. Kuntz. "Molecular docking towards drug discovery." Journal of Molecular Recognition: An Interdisciplinary Journal 9.2 (1996): 175-186.

9. Brooks, Charles, and David A. Case. "Simulations of peptide conformational dynamics and thermodynamics." Chemical Reviews 93.7 (1993): 2487-2502.

10. Tang, Zhiye, Christopher C. Roberts, and A. Chang Chia-en. "Understanding ligand-receptor non-covalent binding kinetics using molecular modeling." Frontiers in bioscience (Landmark edition) 22 (2017): 960.

11. Bulusu, Gopalakrishnan, and Gautam R. Desiraju. "Strong and weak hydrogen bonds in protein–ligand recognition." Journal of the Indian Institute of Science 100.1 (2020): 31-41.

12. Nyakatura, Elisabeth K. Studying the Interaction Profiles of Nonnatural Amino Acids–Towards Predicting their Specific Applications at alpha-Helical Interfaces. Diss. 2013.

13. Stöhr, Martin, Troy Van Voorhis, and Alexandre Tkatchenko. "Theory and practice of modeling van der Waals interactions in electronic-structure calculations." Chemical Society Reviews 48.15 (2019): 4118-4154.

14. Peluso, Paola, and Bezhan Chankvetadze. "Recognition in the domain of molecular chirality: from noncovalent interactions to separation of enantiomers." Chemical Reviews 122.16 (2022): 13235-13400.

15. Samanta, Pabitra Narayan, Devashis Majumdar, and Szczepan Roszak. "First-Principles Modeling." Practical Aspects of Computational Chemistry V (2021): 71.

16. Wang, Rui, et al. "Integrated transcriptome and molecular docking to identify the hub superimposed attenuation targets of curcumin in breast cancer cells." International Journal of Molecular Sciences 24.15 (2023): 12479.

17. Jorgensen WL. The many roles of computation in drug discovery. Science. 2004; 303(5665): 1813–1818. [PubMed: 15031495]

18. Walters WP, Stahl MT, Murcko MA. Virtual screening - an overview. Drug Discov. Today. 1998;3:160–178.

19. Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov. 2002;1(11):882–894. [PubMed: 12415248]

20. Langer T, Hoffmann RD. Virtual screening: an effective tool for lead structure discovery? Curr Pharm Des. 2001; 7(7):509–527. [PubMed: 11375766]

21. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004; 3(11):935–949. [PubMed: 15520816]

22. Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of smallmolecule ligands to macromolecular receptors. Angew Chem Int Ed Engl. 2002; 41(15):2644–2676. [PubMed: 12203463]

23. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008; 153(Suppl 1):S7–26. [PubMed: 18037925]

24. Shoichet, BK.; McGovern, SL.; Wei, B.; Irwin, JJ. Hits, leads and artifacts from virtual and high throughput screening. 2002. Molecular Informatics: Confronting Complexity.

25. Bailey D, Brown D. High-throughput chemistry and structure-based design: survival of the smartest. Drug Discov Today. 2001; 6(2):57–59. [PubMed: 11166243]

26. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982; 161(2):269–288. [PubMed: 7154081]

27. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins. 2002; 47(4):409–443. [PubMed: 12001221]

28. Coupez B, Lewis RA. Docking and scoring--theoretically easy, practically impossible? Curr Med Chem. 2006; 13(25):2995–3003. [PubMed: 17073642]

29. Kontoyianni M, Madhav P, Suchanek E, Seibel W. Theoretical and practical considerations in virtual screening: a beaten field? Curr Med Chem. 2008; 15(2):107–116. [PubMed: 18220766]

30. Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct. 2003; 32:335–373. [PubMed: 12574069]

31. ten Brink T, Exner TE. Influence of protonation, tautomeric, and stereoisomeric states on proteinligand docking results. J Chem Inf Model. 2009; 49(6):1535–1546. [PubMed: 19453150]

32. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model. 2009; 49(6):1455–1474. [PubMed: 19476350]

33. Li X, Li Y, Cheng T, Liu Z, Wang R. Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes. J Comput Chem. 2010; 31(11):2109–2125. [PubMed: 20127741]

34. Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985; 28(7):849–857. [PubMed: 3892003]

35. Kastenholz MA, Pastor M, Cruciani G, Haaksma EE, Fox T. GRID/CPCA: a new computational tool to design selective ligands. J Med Chem. 2000; 43(16):3033–3044. [PubMed: 10956211]

36. Levitt DG, Banaszak LJ. POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph. 1992; 10(4):229–234. [PubMed: 1476996]

37. Laskowski RA. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995; 13(5):323–330. 307–328. [PubMed: 8603061]

38. Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM. A method for localizing ligand binding pockets in protein structures. Proteins. 2006; 62(2):479–488. [PubMed: 16304646]

39. Brady GP Jr. Stouten PF. Fast prediction and visualization of protein binding pockets with PASS.J Comput Aided Mol Des. 2000; 14(4):383–401. [PubMed: 10815774]

40. Mezei M. A new method for mapping macromolecular topography. J Mol Graph Model. 2003; 21(5):463–472. [PubMed: 12543141]

41. Fischer E. Einfluss der configuration auf die wirkung derenzyme. Ber. Dt. Chem. Ges. 1894; 27:2985–2993.

42. Koshland DE Jr. Correlation of Structure and Function in Enzyme Action. Science. 1963; 142:1533–1541. [PubMed: 14075684]

43. Hammes GG. Multiple conformational changes in enzyme catalysis. Biochemistry. 2002; 41(26):8221–8228. [PubMed: 12081470]

44. Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996; 261(3):470–489. [PubMed: 8780787]

45. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry. 1998; 19(14):1639–1662.

46. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997; 267(3):727–748. [PubMed: 9126849]

47. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH,Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1 Method and assessment of docking accuracy. J Med Chem. 2004; 47(7): 1739–1749. [PubMed: 15027865]

48. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK. Gaussian docking functions. Biopolymers. 2003; 68(1):76–90. [PubMed: 12579581]

49. Perola E, Walters WP, Charifson PS. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins. 2004; 56(2):235–249. [PubMed: 15211508]

50. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/ receptor induced fit effects. J Med Chem. 2006; 49(2):534–553. [PubMed: 16420040]

51. Jiang F, Kim SH. “Soft docking”: matching of molecular surface cubes. J Mol Biol. 1991; 219(1):79–102. [PubMed: 2023263]

52. Claussen H, Buning C, Rarey M, Lengauer T. FlexE: efficient molecular docking considering protein structure variations. J Mol Biol. 2001; 308(2):377–395. [PubMed: 11327774]

53. Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006; 26(5):531–568. [PubMed: 16758486]

54. Sander T, Liljefors T, Balle T. Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. J Mol Graph Model. 2008; 26(8):1259–1268. [PubMed: 18203639]

55. Subramanian J, Sharma S, C BR. A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases. J Med Chem. 2006; 49(18):5434–5441. [PubMed: 16942017]

Downloads

Published

10-10-2025

Issue

Section

Articles