Synthesis, Characterization, and Coordination Chemistry of 3-(((Z)-3-Chlorobenzylidene)hydrazono)butan-2-one Oxime and Its Transition Metal Complexes
DOI:
https://doi.org/10.53555/02c1y190Keywords:
3-(((Z)-3-Chlorobenzylidene) hydrazono) butan-2-one oxime, Transition metal complexes, Spectroscopic characterization, Antimicrobial activity, Coordination chemistryAbstract
This study reports the synthesis, characterization, and antimicrobial evaluation of 3-(((Z)-3-chlorobenzylidene)hydrazono)butan-2-one oxime (HL) and its transition metal complexes with Co(II), Ni(II), Cu(II), and Zn(II). The ligand was synthesized through a condensation reaction between 3-chlorobenzaldehyde and butan-2-one oxime and characterized using FT-IR, UV-Vis, NMR, and elemental analysis. The metal complexes were obtained by reacting HL with corresponding metal salts under controlled conditions and characterized by spectroscopic techniques, molar conductivity, and magnetic susceptibility measurements.
Spectroscopic data suggest that HL acts as a bidentate ligand, coordinating through the oxime oxygen and imine nitrogen atoms. The complexes exhibit octahedral or square planar geometries depending on the metal ion. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The complexes demonstrated enhanced activity compared to the free ligand, with the Cu(II) complex showing the highest efficacy, attributed to its higher stability and lipophilicity, which facilitate better interaction with microbial cell membranes.
The findings highlight the potential of 3-(((Z)-3-chlorobenzylidene) hydrazono)butan-2-one oxime and its metal complexes as promising candidates for antimicrobial applications. Further studies are recommended to explore their mechanism of action and potential therapeutic applications.
References
1. Singh, R., et al., Journal of Inorganic Biochemistry, 2019.
2. Kumar, R., et al., Bioorgan. Med. Chem. Lett., 2018.
3. Lazzarini, A., et al., Met. Ions Life Sci., 2017.
4. Kaur, G., et al., Coord. Chem. Rev., 2020.
5. Ebrahimian, S., et al., J. Coord. Chem., 2021.
6. Selvakumar, R., et al., Polyhedron, 2019.
7. Bhatti, A., et al., Bioinorg. Chem. Appl., 2018.
8. Hawari, F., et al., J. Inorg. Biochem., 2014.
9. Khan, S., et al., J. Chem. Sci., 2020.
10. Sharma, P., et al., J. Mol. Struct., 2015.
11. Rastogi, D., et al., Trans. Metal Chem., 2016.
12. Singh, S., et al., Polyhedron, 2013.
13. Gupta, V., et al., J. Chem. Technol. Biotechnol., 2019.
14. Patil, A., et al., Inorganica Chimica Acta, 2017.
15. Messaoudi, I., et al., Eur. J. Med. Chem., 2016.
16. Sharma, S., et al., Coord. Chem. Rev., 2020.
17. James, A., et al., Bioorg. Med. Chem., 2018.
18. Devi, S., et al., J. Appl. Microbiol., 2017.
19. Joshi, H., et al., Met. Ions Life Sci., 2015.
20. Roy, M., et al., J. Antibiot., 2019.
21. Patel, R., et al., J. Pharm. Biomed. Anal., 2017.
22. Sangeetha, T., et al., Coord. Chem. Rev., 2018.
23. Bianchini, C., et al., J. Inorg. Biochem., 2017.
24. Armstrong, D., et al., Inorg. Chem., 2015.
25. Shaterian, H. R., et al., J. Antimicrob. Chemother., 2016.
26. Fadil, H., et al., J. Appl. Microbiol., 2017.
27. Gopal, K., et al., Inorganica Chimica Acta, 2019.
28. Neha, K., et al., Bioorg. Med. Chem. Lett., 2020.
29. Sharifzadeh, M., et al., J. Mol. Struct., 2018.
30. Kaur, N., et al., J. Chem. Sci., 2020.