Edible Foods That Improves Thermogenesis in Human Body

Authors

  • Tarang Chauhan
  • Krishna Shah
  • Nadim Chhipa
  • Pragnesh Patani

DOI:

https://doi.org/10.53555/ejac.v19i1.1111

Keywords:

Thermogenesis, Diet-Induced Thermogenesis (DIT), Non-Shivering Thermogenesis, Weight Management, Metabolic Disorders.

Abstract

The multifaceted concept of thermogenesis, which encompasses various physiological processes by which the human body generates heat, contributing to energy expenditure and the maintenance of core body temperature. The article particularly emphasizes diet-induced thermogenesis (DIT) and non-shivering thermogenesis, exploring the intricate mechanisms driven by the sympathetic nervous system and the activation of brown adipose tissue (BAT). A comprehensive analysis is provided on the role of specific edible foods, such as papaya, chili peppers, and green tea, in enhancing thermogenesis. These foods are highlighted for their bioactive compounds—such as papain, capsaicin, and catechins—that activate thermogenic pathways, increase metabolic rate, and potentially aid in weight management.

Author Biographies

  • Tarang Chauhan

    Department of Pharmacy, Khyati College of Pharmacy, Palodia, Ahmedabad.

  • Krishna Shah

    Department of Pharmacy, Khyati College of Pharmacy, Palodia, Ahmedabad.

  • Nadim Chhipa

    Associate Professor, Department of Pharmaceutical Chemistry, Khyati College of Pharmacy, Palodia, Ahmedabad

  • Pragnesh Patani

    Principal and Professor, Department of Pharmacology, Khyati College of Pharmacy, Palodia, Ahmedabad

References

John C. Clapham , “Central control of thermogenesis”, Neuropharmacology, 2012, 63(1) , 111-123.

Ken K Y Ho, “Diet-induced thermogenesis: fake friend or foe?”, Endocrinology, 2018, 238(3), R185 –R191.

LeBlanc J, Cabanac M, Samson P., “Reduced postprandial heat production with gavage as compared with meal feeding in human subjects”, Am J Physiol, 1984, 246, E95–101.

Peterson CM, Lecoultre V, Frost EA, Simmons J, Redman LM, Ravussin E, “The thermogenic responses to overfeeding and cold are differentially regulated”, Obesity, 2016, 24, 96–101.

Vijgen GH, Bouvy ND, Leenen L, Rijkers K, Cornips E, Majoie M, “Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity”, PLoS ONE, 2013, 8, e77221.

Vítek L, Haluzík M, “The role of bile acids in metabolic regulation”, J Endocrinol, 2016, 228, R85–96.

Mi-Young PARK, Jisu KIM, Nana CHUNG, Hun-Young PARK, Hyejung HWANG, Jin-soo HAN, Jae-Moo SO, Chi-Ho LEE, Jonghoon PARK, Kiwon LIM , “Dietary Factors and Eating Behaviors Affecting Diet-Induced Thermogenesis in Obese Individuals: A Systematic Review”, Journal of Nutritional Science and Vitaminology, 2020, 66(1), 1-9.

Klaas R Westerterp, “Diet induced thermogenesis”, Nutrition & Metabolism, 2004, 1(5).

Francois Haman and Denis P. Blondin, “Shivering thermogenesis in humans: Origin, contribution and metabolic requirement”, Temperature, 2017, 4(3), 217–226.

Morrison SF., Carl Ludwig, “Distinguished lectureship of the APS neural control and autonomic regulation section: central neural pathways for thermoregulatory cold defense”, J Appl Physiol., 2011, 110, 1137-49.

Blondin DP, Labbé SM, Phoenix S, Guérin B, ÉE T, Richard D, Carpentier AC, Haman F., “Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men”, J Physiol., 2015, 593, 701-14.

Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard D, Carpentier AC., “Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans”, J Clin Invest, 2012, 122, 545-52.

Blondin DP, Frisch F, Phoenix S, Guérin B, Turcotte ÉE, Haman F, Richard D, Carpentier AC., “Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans.”, Cell Metab., 2017, 25(2), 438-47.

Wijers SL, Saris WH, van Marken Lichtenbelt WD., “Individual thermogenic responses to mild cold and overfeeding are closely related”, J Clin Endocrinol Metab, 2007, 92, 4299-305.

van Ooijen AM, van Marken Lichtenbelt WD, van Steenhoven AA, Westerterp KR., “Cold-induced heat production preceding shivering”, Br J Nutr, 2005, 93, 387-91.

I B Mekjavic, K D Mittleman, N Kakitsuba , “The role of shivering thermogenesis and total body insulation in core cooling rate”, Ann Physiol Anthropol , 1987, 6(2), 61-68.

Denis P Blondin, Hans Christian Tingelstad, Olivier L Mantha, Chantal Gosselin, François Haman, “Maintaining thermogenesis in cold exposed humans: relying on multiple metabolic pathways”, Compr Physiol, 2014, 4(4), 1383-402.

Matta L, Blaas L, de Faria CC., “From honeymoon to dysfunction: brown fat remodelling in obesity.” J Physiol., 2023, 601(4), 711-713.

Ikeda K, Yamada T., “Adipose tissue thermogenesis by calcium futile cycling.” J Biochem., 2022, 172(4), 197-203.

Pani P, Bal NC., “Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows.” Biol Rev Camb Philos Soc., 2022, 97(6):2106-2126.

Michael J. Gaudry, M. Jastroch, “Insights into the Evolution of Non‐shivering Thermogenesis from UCP1 of the Naked Mole Rat (Heterocephalus glaber)”, The FASEB Journal , 2022, 36(S1).

Chan, P.-C.; Hsieh, P.-S., “The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases.”, Int. J. Mol. Sci., 2022, 23, 9448.

Leblanc, J.; Cabanac, M.; Samson, P., “Reduced postprandial heat production with gavage as compared with meal feeding in human subjects”, Am. J. Physiol. Metab., 1984, 246, E95–E101.

Janský L., “Non-shivering thermogenesis and its thermoregulatory significance”, Biol Rev Camb Philos Soc, 1973, 48(1), 85-132.

Song G, Kim HL, Jung Y, Park J, Lee JH, Ahn KS, Kwak HJ, Um JY., “Fruit of Hovenia dulcis Thunb. Induces Nonshivering Thermogenesis through Mitochondrial Biogenesis and Activation by SIRT1 in High-Fat Diet-Fed Obese Mice and Primary Cultured Brown Adipocytes”, J Agric Food Chem., 2020, 68(24), 6715-6725.

Cannon, B ; Nedergaard J, “Nonshivering thermogenesis and its adequate measurement in metabolic studies” Journal of experimental biology, 2011, 214(2), 242-253.

Levy SB., “Field and laboratory methods for quantifying brown adipose tissue thermogenesis”, Am J Hum Biol, 2019, 31(4), e23261.

Vijgen GHEJ, Bouvy ND, Teule GJJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD , “Brown Adipose Tissue in Morbidly Obese Subjects”, PLoS ONE , 2011, 6(2), e17247.

Olivier Boss , Tephen R. Farmer, “Recruitment of brown adipose tissue as a therapy for obesity-associated diseases”, Front. Endocrin., 2012, 3,14.

Rosenbaum, M., Leibel, R., “Adaptive thermogenesis in humans”, Int J Obes, 2010 ,34 (1), S47–S55.

Lowell, B., Spiegelman, B., “Towards a molecular understanding of adaptive thermogenesis”, Nature, 2000, 404, 652–660.

Chan, P.-C.; Hsieh, P.-S., “The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases”, Int. J. Mol. Sci. 2022, 23, 9448.

Zhou R, Cao Y, Xiang Y, Fang P and Shang W, “Emerging roles of histone deacetylases in adaptive thermogenesis”, Front. Endocrinol., 2023, 14.

Kun-young park, sungwoo choi, jae myoung suh; “1681-P: RNA Binding Protein HuR Is Essential for Adaptive Thermogenesis”, Diabetes, 2023, 72 (1): 1681-P.

Bastías-Pérez, M.; Zagmutt, S.; Soler-Vázquez, M.C.; Serra, D.; Mera, P.; Herrero, L., “Impact of Adaptive Thermogenesis in Mice on the Treatment of Obesity”, Cells , 2020, 9, 316.

Yoshikawa, T.; Dai, P., "Mitochondrial Energy Metabolism in the Regulation of Thermogenic Brown Fats and Human Metabolic Diseases," Int. J. Mol. Sci., 2023, 24(2), 1352.

Hibi, M.; Oishi, S.; Matsushita, M.; Yoneshiro, T.; Yamaguchi, T.; Usui, C.; Iwata, S.; Yasunaga, K.; Katsuragi, Y.; Kubota, K.; Kameya, T.; Kimura, K.; Kajimoto, K.; Fushiki, T., “Short-term Cold Acclimation Recruits Brown Adipose Tissue in Humans”, Diabetes ,2016, 65 (5), 1179-1189.

Lage, R.; Fernø, J.; Nogueiras, R.; Diéguez, C.; López, M. “Contribution of Adaptive Thermogenesis to the Hypothalamic Regulation of Energy Balance”, Biochem. J. ,2016, 473, 4063–4082.

Jiang, T.; Su, D.; Liu, X.; Wang, Y.; Wang, L., “Transcriptomic Analysis Reveals Fibroblast Growth Factor 11 (FGF11) Role in Brown Adipocytes in Thermogenic Regulation of Goats”, Int. J. Mol. Sci. ,2023, 24, 10838.

Zhu, Y.; Qi, Z.; Ding, S., "Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings?" Int. J. Mol. Sci., 2022, 23(21), 13142.

Vosselman, M.J.; Hoeks, J.; Brans, B.; Pallubinsky, H.; Nascimento, E.B.; van der Lans, A.A.; Broeders, E.P.; Mottaghy, F.M.; Schrauwen, P.; van Marken, L.W., “Low brown adipose tissue activity in endurance-trained compared with lean sedentary men”, Int. J. Obes., 2015, 39, 1696–1702.

Egan, B.; Zierath, J. R., “Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation”, Cell Metab., 2013, 17 (2), 162–184.

Gaesser, G. A.; Brooks, G. A., “Metabolic Bases of Excess Post-Exercise Oxygen Consumption: A Review.”, Med. Sci. Sports Exerc., 1984, 16 (1), 29–43.

Roberts, M. F.; Wenger, C. B. “Control of Skin Circulation During Exercise and Heat Stress.”, Med. Sci. Sports, 1979, 11 (1), 36–41.

Chen, D. “Temperature Regulation During Exercise and the Individual Differences.” SHS Web Conf. 2023, 174.

Périard, J. D.; Eijsvogels, T. M. H.; Daanen, H. A. M. “Exercise Under Heat Stress: Thermoregulation, Hydration, Performance Implications, and Mitigation Strategies.” Physiol. Rev. 2021, 101 (4), 1873–1979.

Gaesser, G. A.; Brooks, G. A. “Metabolic Bases of Excess Post-Exercise Oxygen Consumption: A Review.” Med. Sci. Sports Exerc. 1984, 16 (1), 29–43.

Vidal, P.; Stanford, K. I. “Exercise-Induced Adaptations to Adipose Tissue Thermogenesis.” Front. Endocrinol. 2020, 11, 270.

Poggiogalle, E.; Jamshed, H.; Peterson, C. M. “Circadian Regulation of Glucose, Lipid, and Energy Metabolism in Humans.” Metabolism 2018, 84, 11–27. DOI: 10.1016/j.metabol.2018.04.001.

Franklin, B. A.; Eijsvogels, T. M. H.; Pandey, A.; Quindry, J.; Toth, P. P. “Physical Activity, Cardiorespiratory Fitness, and Cardiovascular Health: A Clinical Practice Statement of the ASPC Part I: Bioenergetics, Contemporary Physical Activity Recommendations, Benefits, Risks, Extreme Exercise Regimens, Potential Maladaptations.” Am. J. Prev. Cardiol. 2022, 12, 100424.

Westerterp, K. R. “Diet-Induced Thermogenesis.” Nutr. Metab. (Lond.) 2004, 1, 5.

Santana, L. F.; Inada, A. C.; Espírito Santo, B. L. S. D.; Filiú, W. F. O.; Pott, A.; Alves, F. M.; Guimarães, R. C. A.; Freitas, K. C.; Hiane, P. A. “Nutraceutical Potential of Carica papaya in Metabolic Syndrome.” Nutrients 2019, 11 (7), 1608.

Kumar, K. P. S.; Bhowmik, D.; Duraivel, S.; Umadevi, M. “Traditional and Medicinal Uses of Banana.” J. Pharmacogn. Phytochem. 2012, 1 (3), 51–63.

Etebu, E.; Nwauzoma, A. B., “A Review on Sweet Orange (Citrus sinensis Osbeck): Health, Diseases, and Management”, Am. J. Res. Commun., 2014, 2 (2), 33–70.

Richardson, D. P.; Ansell, J.; Drummond, L. N. "The Nutritional and Health Attributes of Kiwifruit: A Review." Eur. J. Nutr. 2018, 57 (8), 2659–2676.

Chen, J.; Li, L.; Li, Y.; et al. "Activation of TRPV1 Channel by Dietary Capsaicin Improves Visceral Fat Remodeling through Connexin43-Mediated Ca2+ Influx." Cardiovasc. Diabetol. 2015, 14 (1), 22.

Gosselin, C.; Haman, F. "Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men." Br. J. Nutr. 2013, 110(2), 282–288.

Van Schaik, L.; Kettle, C.; Green, R.; Irving, H. R.; Rathner, J. A. "Effects of Caffeine on Brown Adipose Tissue Thermogenesis and Metabolic Homeostasis: A Review." Front. Neurosci. 2021, 15, 621356.

İçer, M. A.; Tek, N. "Effects of Red Pepper, Ginger, and Turmeric on Energy Metabolism: Review of Current Knowledge." Altern. Ther. Health Med. 2021, 21(12), 1–9.

Li, X.; Lu, H. Y.; Jiang, X. W.; Yang, Y.; Xing, B.; Yao, D.; Wu, Q.; Xu, Z. H.; Zhao, Q. C. "Cinnamomum cassia Extract Promotes Thermogenesis During Exposure to Cold via Activation of Brown Adipose Tissue." J. Ethnopharmacol. 2021, 266, 113413.

Santos, A. C. C.; Amaro, L. B. R.; Batista Jorge, A. H.; Lelis, S. F.; Lelis, D. F.; Guimarães, A. L. S.; Santos, S. H. S.; Andrade, J. M. O. "Curcumin Improves Metabolic Response and Increases Expression of Thermogenesis-Associated Markers in Adipose Tissue of Male Offspring from Obese Dams." Mol. Cell Endocrinol. 2023, 563, 111840.

Downloads

Published

25-11-2024

Issue

Section

Articles